

Frictionless Generators

by Garrett Dimon

Copyright © 2024 Start & Sustain LLC

1 | Save Time and Reduce Tedium

Before we begin, I need to clarify one detail. This book isn’t
about building custom Rails generators. It’s about leveraging
custom generators to save time and reduce tedium. That
may sound like a distinction without a difference, but I en-
courage you to take a moment and think about whether
anyone would regularly build or use a generator that didn’t
save time and reduce tedium—I know I wouldn’t.

So, yes, we are creating generators, but the results will only
be valuable in the context of saving time. To that end, we won’t simply discuss
how to write code for generators but how to design and implement generators
to be net time savers for us and everyone we work with.

And since you’re reading this, the book assumes that you at least have a pass-
ing familiarity with the built-in Rails generators like scaffold, resource, model,
migration, or others. And, if you’ve used those, you probably continue to use
at least some of them even if you could always choose to do the same work
manually.

You may not fully understand how they do what they do, but you likely appre-
ciate what they do—save time and rescue us from tedious and mindless work.
That’s the gap for us to bridge. We’ll break generators down and examine
them so we can more easily recognize opportunities to build custom gener-
ators as well as develop the skills we need to build them efficiently. For that,
we need to really think about why we build generators—both the obvious and
not-so-obvious aspects.

Generators primarily save time by reducing direct manual effort, but they
also save time indirectly in ways that aren’t easily recognizable. For example,
automating a particularly error-prone task can save even more time than
a less error-prone task. Since the generator will have automated tests and
reduce the chance of regressions or manual mistakes, we spend less time

1

1. SAVE TIME AND REDUCE TEDIUM

debugging and fixing issues.

Custom generators can also provide a great way to capture common shared
patterns so they’re more approachable and less intimidating for junior devel-
opers and new teammembers who may not be as familiar with them. That
can be empowering for them while also reducing the need for manual doc-
umentation or frequent assistance from other teammembers. And for each
way they streamline processes for less-experienced teammembers, they also
help the experienced teammembers stay in the zone by delegating the boring
and repetitive tasks to the machines.

In many ways generators can serve as a substitute for several categories of
documentation. By codifying patterns and tools in a way that manual docu-
mentation can’t, generators can have automated tests that wouldn’t be possi-
ble with prose-based documentation. Moreover, it will usually be faster for
someone to run a command than read a page of explanatory prose.

For example, when performing a generator-friendly task manually, a new or
junior teammember may need assistance from other teammembers. When
that happens, we’re almost doubling the amount of time spent since a second
teammember becomes involved with the process. In many cases, that also
involves an interruption and the related context-switching costs. So if team-
mates regularly require help with a specific task, automating it with a custom
generator might be worth it if only to reduce their need for additional help.

While codifying practices into scripts and tools can require
additional documentation and education to ensure that ev-
eryone is aware of the tools, generators are already a famil-
iar tool for Rails developers. That means that compared to
one-off scripts, generators can be more inviting and welcom-
ing to junior and new teammembers since they’ll already
know how to look for and use generators. No need to rein-
vent the wheel, right?

And finally, mind-numbingly tedious and manual tasks can
break our concentration and take us out of the zone. Or we might be tempted
to put it off because other tasks might feel less misery-inducing. So account-
ing for delays, interruptions, and that return trip to the zone could lengthen
the average time as well.

Despite all of the potential upside with generators, we also have to acknowl-
edge the cost of the up-front time required to create one. The time has a cost,

2

1. SAVE TIME AND REDUCE TEDIUM

but if we choose wisely, it’s more like an investment. And like any investment,
spending two hours to save five minutes would be silly. But spending thirty
minutes or less to save five minutes each of the five times someone performs
a task each week, and that’s a multiplier where the math quickly starts to work
out.

While infrequent tasks may need to be especially time-consuming to justify
automation with generators, shorter high-frequency tasks can also be more
time-consuming due to context-switching costs. And just as frequency can
increase with the number of teammates, those context-switching costs will go
up as well.

Even with a finished, well-tested, working generator, we never get a guarantee
that it will see enough use to generate a good return if it’s too difficult to find
or use. And with every generator, we still have to remember and type the
command accurately or spend time refreshing our memories by perusing the
documentation. Fortunately, when compared to the time required to learn
and perform a manual process, it’s rare for the generator-based approach to
take anywhere near as long. And since generators provide a familiar syntax
for Rails developers, turning to themmeans they’ll be inherently discoverable
alongside all of the other generators.

Collectively, these considerations aren’t easily quantifiable. We can’t just run a
stopwatch once and then multiply it by a frequency. That wouldn’t account for
all the other ways manual tasks can take longer and impact our productivity.
And if we’re talking about a team, the chances are good that each teammem-
ber would perform the task differently and require differing amounts of time.

But just because generators can save time and reduce tedium doesn’t guaran-
tee they will. If we sink too much time into creating a generator or waste time
over-building complex or confusing generators, we could have been better off
not building one at all. If a generator is difficult to use, it may never be used
enough to justify the development effort.

Clearly, we can benefit from the right generators, but that up-front devel-
opment cost can get in the way. With that in mind, we can start to see how
reducing the time required to create one becomes critical to making the math
work. The more efficiently we can create a custom generator, the sooner we
start recognizing net time savings, and if we’re able to create a useful and re-
liable generator in thirty minutes, there are few scenarios where generators
don’t generate a great return. That’s our main goal. Lower that up-front cost
so low that the option of performing recurring tasks manually rarely merits

3

1. SAVE TIME AND REDUCE TEDIUM

consideration.

If reducing the up-front time required to build a generator is the goal, then
becoming knowledgeable and skilled with generators is certainly a key part
of that process. If, however, we maintain too narrow of a view of which tasks
can be handled with custom generators, we’ll still miss out on a wide variety
of opportunities. Similarly, if we spend too much time over-building, the time
savings may never exceed the up-front development costs. Furthermore, if we
limit our imagination to only generating application code, we won’t be able to
see many generator-friendly tasks that don’t touch application code.

Enough with the theory and background. Let’s explore some real code. If we
look at the most well-known built-in generators, we might believe they need
to be complex and deeply integrated with every part of Rails to save mean-
ingful time. While the more advanced generators for models or scaffolding
receive the bulk of the attention, Rails also provides some simpler genera-
tors like benchmark and task which generate one file each and don’t involve
ActiveRecord at all.

The code and behavior of smaller generators might tempt us to dismiss them as
too simple, but that simplicity is precisely the point. We can create small and
simple generators with much less effort, and they’ll be easier to maintain as well.
They’re easier to test. They’re easier to learn and use regularly. And if we want a
simple generator to do more, we can always add on to it with very little effort.

Imagine we want to create a new rake task file that has four tasks: cleaning
the cache, clear out the “tmp” folder, rebuild assets, and reset our develop-
ment and test logs. To start, we’d likely want to put together a basic Rake file
structure that has a namespace and placeholders for each of the tasks.

4

1. SAVE TIME AND REDUCE TEDIUM

lib/tasks/reset.rake

1 namespace :reset do
2 desc "TODO"
3 task cache: :environment do
4 end
5
6 desc "TODO"
7 task tmp: :environment do
8 end
9

10 desc "TODO"
11 task logs: :environment do
12 end
13
14 desc "TODO"
15 task assets: :environment do
16 end
17 end

At a glance, this file might appear to be too simple to justify a generator, and
we could probably create it manually each time without too much trouble. On
the other hand, we have a fair amount of repetition in the resulting file. If we
only consider the complexity of the generated content, however, we don’t see
the handful of other steps involved. And those steps change the equation just
enough for otherwise simple files.

The first point of friction happens because we also have to create the file
in the right location. That involves naming the file and knowing where to
place it. For an experienced Rails developer, that may seem trivial, but that’s
not always the case for a junior developer or even a senior developer that’s
new to Rails or a given codebase. They might not know that rake files go in
lib/tasks , might need to find similar code to copy and paste, or they might
need to go read up on how to structure rake tasks. All of those little pieces of
friction start to add up, and it’s the collective inefficiency that contributes to
making generators worthwhile.

With all of that context out of the way, we’re going to start creating some code,
and as we start running generators, we should sync up about the generator
command and examples throughout the book so there’s no confusion about
running the generate command.

5

1. SAVE TIME AND REDUCE TEDIUM

Depending on your local setup for both Ruby and Rails, you’ll either use
bin/rails or rails to run the generator generator. The former ensures
that the call will use your application’s version of Rails, but the latter is more
concise and saves characters in examples. Similarly, just as most of the key
Rails commands can be run with just the first letter of the command, the
generate command works the same way. So instead of generate , we can
use g .

1 # The verbose way to run a generator...
2 bin/rails generate generator obj
3
4 # The shorthand we'll use...
5 rails g generator obj

For the rest of the book, we’ll use “g” to save space and typing, but either op-
tion works. Running our generate command creates a handful of files and
directories for us. So use whichever you’re most comfortable with, but rec-
ognize from here on out that we’ll use rails g in order to save space and
keystrokes. And for the examples where we run tests, we’ll shorten bin/rails test
to rails t as well. But don’t hesitate to use bin/rails g if that creates
more consistent results based on your configuration.

Now we can plan an ideal command-line syntax for generating our Rake file.
Regardless of a developer’s familiarity with Rake files, it would be nice if we
could type something like rails g task reset cache tmp logs assets
to generate that Rake file for us.

Fortunately, that’s what the built-in task generator gives us, and it’s a great
place to start since it only generates one file. Don’t worry too much about un-
derstanding the code in detail just yet. We’ll get to that later. For now, focus on
the fact that we have a useful generator with one declaration for an argument
and a single, one-line method.

6

https://github.com/rails/rails/blob/main/railties/lib/rails/generators/rails/task/task_generator.rb

1. SAVE TIME AND REDUCE TEDIUM

/railties/lib/rails/generators/rails/task/task_generator.rb

1 module Rails
2 module Generators
3 class TaskGenerator < NamedBase # :nodoc:
4 argument :actions, type: :array, default: [],
5 banner: "action action"
6
7 def create_task_files
8 template "task.rb", File.join("lib/tasks", "#{file_name}.rake")
9 end

10 end
11 end
12 end

That’s only the generator itself, though. The other half of the magic comes
from a relatively short ERb template file. Again, don’t focus on the specific
code just yet. For now, just note that the template contains some basic ERb.
Even better, templates have full access to all of the attributes and methods
available from within the generator.

/railties/lib/rails/generators/rails/task/templates/task.rb.tt

1 namespace :<%= file_name %> do
2 <% actions.each do |action| -%>
3 desc "TODO"
4 task <%= action %>: :environment do
5 end
6
7 <% end -%>
8 end

Regardless of their simplicity, those two files streamline a lot of tedious work.
Not much code and barely any logic? It’s like a free running start! Even better,
that template file is incredibly similar to the code we’d have to write when
creating the file manually anyways. So the effort to create a generator for
this is only marginally more than it would be creating the file manually that
first time. And once you know generators well enough, that effort is arguably
trivial.

Not all generators will be this short, but many custom generators can be this
short. Moreover, this is exactly how we want all of our custom generators to
start. That approach means we can be sure they save time before we invest
too much effort in them. We always have the option to enhance them later if
we think it’s worth it.

7

https://github.com/rails/rails/blob/main/railties/lib/rails/generators/rails/task/templates/task.rb.tt

1. SAVE TIME AND REDUCE TEDIUM

In the interest of full disclosure, those two files only represent the core of
the task generator. Frictionless generators also need tests. Fortunately, Rails
generators get their own test cases and assertions to streamline testing so that
it doesn’t drastically add to the effort. Those specialized tools for automated
testing are so central to making it all work, we’ll cover them extensively in a
later chapter.

So it’s alright for generators to be small, but limiting ourselves to small genera-
tors would be selling ourselves short. If we want to maximize our time-saving
potential, we still need to expand our ability to recognize generator candi-
dates by imagining various ways they can help us.

While most generators create application code, there’s no requirement to do so,
and limiting ourselves to generating application code ignores countless opportu-
nities. As we saw, generators can be used for tasks and benchmarks. They can
just as easily generate reports, documentation, test data, seed data, or update
a README. If we ever find that we repeatedly need a certain text-based file,
there’s a chance we’ve got a generator candidate. (This book was created by a
generator that convertsMarkdown files and assembles the results into a PDF
and ePub.)

Even less code-like, many teams keep a “docs” directory in the root of the
repository for plain-text orMarkdown files. It provides a predictable home for
basic development documentation around setting up development environ-
ments, running tests, as well as vendor and dependency knowledge.

Depending on how far we want to take it, generators can
help streamline that process because we could create a gen-
erator for documentation templates. We could run a com-
mand like rails g vendor VendorName and get a pre-
filled template file at docs/vendors/<vendor_name>.md .
We could even add logic to ensure that a list of vendors at
docs/vendors.md automatically includes a reference to
our newly added vendor. This kind of text file work is pre-
cisely where generators shine.

That vendor template could include placeholders for the
website, status site, support site, and documentation links.
It could include the contact information for our primary vendor contact, as
well as the internal teammember most familiar with the vendor. It could
encourage capturing knowledge about how integral the vendor is, which other
vendors were considered, why we chose the vendor, or even what might make

8

1. SAVE TIME AND REDUCE TEDIUM

it worth switching to another vendor.

And to take all of this a little further, we could create a generator to upgrade
the bundle add <gem> command. That generator could use the various
Gemfile actions available to generators to handle adding the gem and relevant
details to the Gemfile, and then it could automatically create a new markdown
file at /docs/dependencies/gems/<gem>.md . Now when we go to commit
our updates, we’re reminded we have an otherwise empty template file that
could use some information before we add another dependency to the code-
base.

Not every team needs or wants to spend time capturing this kind of infor-
mation, but that’s not the point. These are only basic examples of tasks that
nobody enjoys. And when those tasks are even remotely tedious, we’ll phone
it in or skip it entirely. If it’s seamlessly integrated into the process of setting
up new vendors using a generator and the generator does most of the tedious
work, it creates new opportunities to more easily capture the types of knowl-
edge that tend to be lost over time.

Documentation can be tedious or easily overlooked, but generators can re-
move the friction while nudging teammembers to fill in the kind of knowl-
edge that might otherwise be lost over time.

Documentation is only one example, however. I use a gener-
ator to start new blog posts since they’re justMarkdown files
in my site’s repository. Generators can just as easily be used
to generate YAML, CSV, CSS, JavaScript, or any other kind
of plain text. We could even use them to optimize or resize
images. Once we start thinking of opportunities beyond the
basics and not limiting ourselves to generating Ruby, our
potential time savings expand significantly.

And with all of that we have some context for creating help-
ful custom generators that save time and reduce tedium. And while I’ve been
banging the time-saving drum pretty heavily, there’s one more—admittedly
subjective—bonus with this kind of automation. The categories of tasks that
lend themselves to automation with custom generators also frequently hap-
pen to be the tasks that are the least enjoyable to performmanually.

So we’re not just going to save time. We’re going to (hopefully) enjoy our work
more too. That may sound like I’m over-selling them, but I promise I’ve had
way more fun building generators than I have manually creating files and

9

1. SAVE TIME AND REDUCE TEDIUM

doing the copy-paste-search-replace dance. Hopefully this book can do the
same for you by saving time and having a little more fun. Save time. Reduce
tedium. Enjoy work a little more.

10

	Save Time and Reduce Tedium

