Extracted from:

Go Brain Teasers

Exercise Your Mind

This PDF file contains pages extracted from Go Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pra. ernatic
OgraImmers

Go Brain Teasers

Exercise Your Mind

Miki Tebeka
edited by Margaret Eldridge







Go Brain Teasers

Exercise Your Mind

Miki Tebeka

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Jennifer Whipple

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-899-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2021


https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Sharon, who suffered me in quarantine,
and the twenty years before that.






A Job to Do

J
job.go
package main
import (
n fmt n

)

type Job struct {
State string
done chan struct{}

}

func (j *Job) Wait() {
<-j.done

}

func (j *Job) Done() {
j.State = "done"
close(j.done)

}

func main() {
ch := make(chan Job)
go func() {
j 1= <-ch
j.Done()
10

job := Job{"ready", make(chan struct{})}
ch <- job

job.Wait()

fmt.Println(job.State)

Guess the Output

Try to guess what the output is before moving to the next page.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/d-gobrain/code/job.go
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

Go Brain Teasers ® 8

This code will print: ready

At first glance, it looks like the code is OK. You're using a pointer receiver in
the Job struct methods. The fact that the call to Wait terminated tells you that
the channel was closed.

The problem is with the definition of ch. It is a channel of Job, not *job, which
means that when you send the variable job over the channel, you actually
send a copy of it. A channel in Go is a pointer-like type, so even though there
is a copy of job inside the goroutine, j.done points to the same channel job.done
is pointing to.

Strings in Go are not pointer-like. When you call j.Done(), the string inside the
goroutine, you change the value of the State field in the goroutine copy of job.
This change is not reflected in the job variable declared in line 28.

The solution is to make ch type *Job.

job_ptr.go
package main

import (
n fmtll
)
type Job struct {

State string
done chan struct{}

}

func (j *Job) Wait() {
<-j.done

}

func (j *Job) Done() {
j.State = "done"
close(j.done)

func main() {
ch := make(chan *Job)
go func() {
j = <-ch
j.Done()
10

job := Job{"ready", make(chan struct{})}
ch <- &job

job.Wait()

fmt.Println(job.State)

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/d-gobrain/code/job_ptr.go
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

Further Reading

There Is No Pass-by-Reference in Go
dave.cheney.net/2017/04/29/there-is-no-pass-by-reference-in-go

Go Concurrency Patterns: Pipelines and Cancellation
blog.golang.org/pipelines

Channels in the Go Tour
tour.golang.org/concurrency/2

AlJobtoDo *9

« Click HERE to purchase this book now. discuss


http://dave.cheney.net/2017/04/29/there-is-no-pass-by-reference-in-go
http://golang.org/ref/spec#Channel_types
http://blog.golang.org/pipelines
http://tour.golang.org/concurrency/2
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

