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To Sharon, who suffered me in quarantine,
and the twenty years before that.






A Job to Do

J
job.go
package main
import (
n fmt n

)

type Job struct {
State string
done chan struct{}

}

func (j *Job) Wait() {
<-j.done

}

func (j *Job) Done() {
j.State = "done"
close(j.done)

}

func main() {
ch := make(chan Job)
go func() {
j 1= <-ch
j.Done()
10

job := Job{"ready", make(chan struct{})}
ch <- job

job.Wait()

fmt.Println(job.State)

Guess the Output

Try to guess what the output is before moving to the next page.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/d-gobrain/code/job.go
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

Go Brain Teasers ® 8

This code will print: ready

At first glance, it looks like the code is OK. You're using a pointer receiver in
the Job struct methods. The fact that the call to Wait terminated tells you that
the channel was closed.

The problem is with the definition of ch. It is a channel of Job, not *job, which
means that when you send the variable job over the channel, you actually
send a copy of it. A channel in Go is a pointer-like type, so even though there
is a copy of job inside the goroutine, j.done points to the same channel job.done
is pointing to.

Strings in Go are not pointer-like. When you call j.Done(), the string inside the
goroutine, you change the value of the State field in the goroutine copy of job.
This change is not reflected in the job variable declared in line 28.

The solution is to make ch type *Job.

job_ptr.go
package main

import (
n fmtll
)
type Job struct {

State string
done chan struct{}

}

func (j *Job) Wait() {
<-j.done

}

func (j *Job) Done() {
j.State = "done"
close(j.done)

func main() {
ch := make(chan *Job)
go func() {
j = <-ch
j.Done()
10

job := Job{"ready", make(chan struct{})}
ch <- &job

job.Wait()

fmt.Println(job.State)
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Further Reading

There Is No Pass-by-Reference in Go
dave.cheney.net/2017/04/29/there-is-no-pass-by-reference-in-go

Go Concurrency Patterns: Pipelines and Cancellation
blog.golang.org/pipelines

Channels in the Go Tour
tour.golang.org/concurrency/2
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