
Extracted from:

Go Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from Go Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Go Brain Teasers
Exercise Your Mind

Miki Tebeka

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Jennifer Whipple
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-899-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Sharon, who suffered me in quarantine,
and the twenty years before that.

Puzzle 12

A Funky Number?

num.go
package main

import (
"fmt"

)

func main() {
fmt.Println(0x1p-2)

}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/d-gobrain/code/num.go
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

This code will print: 0.25

Go has several number types. The two main ones are

Integer
These are whole numbers. Go has int8, int16, int32, int64, and int. There are
also all the unsigned ones such as uint8 and so on.

Float
These are real numbers. Go has float32 and float64.

There are other types such as complex and the various types defined in math/big.

When you write a number literal, such as 3.14, the Go compiler needs to parse
it to a specific type (float64, in this case). The Go spec2 defines how you can
write numbers. Let’s have a look at some examples.

num_lit.go
package main

import (
"fmt"

)

func main() {
// Integer
printNum(10) // 10 of type int
printNum(010) // 8 of type int
printNum(0x10) // 16 of type int
printNum(0b10) // 2 of type int
printNum(1_000) // 1000 of type int <1>

// Float
printNum(3.14) // 3.14 of type float64
printNum(.2) // 0.2 of type float64
printNum(1e3) // 1000 of type float64
printNum(0x1p-2) // 0.25 of type float64

// Complex
printNum(1i) // (0+1i) of type complex128
printNum(3 + 7i) // (3+7i) of type complex128
printNum(1 + 0i) // (1+0i) of type complex128

}

func printNum(n interface{}) {
fmt.Printf("%v of type %T\n", n, n)

}

2. https://golang.org/ref/spec#Lexical_elements

Go Brain Teasers • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/d-gobrain/code/num_lit.go
https://golang.org/ref/spec#Lexical_elements
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

_ serves as the thousands separator. It makes big numbers much more
readable for us humans.

1e3 is known as scientific notation.

0x1p-2 is called a hexadecimal floating-point literal in the Go specification and
is following the IEEE 754 2008 specification. To calculate the value, do the
following:

• Compute the value before the p as a hexadecimal number. In this example
it’s 0x1 = 1.

• Compute the value after the p as 2 to the power of that value. In this
example it’s 2-2 = 0.25.

• Finally, multiply the two numbers, in this example, 1 * 0.25 = 0.25.

Further Reading
Lexical Elements in the Go Specification

golang.org/ref/spec#Lexical_elements

Scientific Notation on Wikipedia
en.wikipedia.org/wiki/Scientific_notation

IEEE 754 on Wikipedia
en.wikipedia.org/wiki/IEEE_754

Integer Literals
golang.org/ref/spec#Integer_literals

Floating-Point Literals
golang.org/ref/spec#Floating-point_literals

Imaginary Literals
golang.org/ref/spec#Imaginary_literals

• Click HERE to purchase this book now. discuss

A Funky Number? • 9

http://golang.org/ref/spec#Lexical_elements
http://en.wikipedia.org/wiki/Scientific_notation
http://en.wikipedia.org/wiki/IEEE_754
http://golang.org/ref/spec#Integer_literals
http://golang.org/ref/spec#Floating-point_literals
http://golang.org/ref/spec#Imaginary_literals
http://pragprog.com/titles/d-gobrain
http://forums.pragprog.com/forums/d-gobrain

