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Puzzle 12

A Funky Number?

num.go
package main

import (
"fmt"

)

func main() {
fmt.Println(0x1p-2)

}

Guess the Output

Try to guess what the output is before moving to the next page.
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This code will print: 0.25

Go has several number types. The two main ones are

Integer
These are whole numbers. Go has int8, int16, int32, int64, and int. There are
also all the unsigned ones such as uint8 and so on.

Float
These are real numbers. Go has float32 and float64.

There are other types such as complex and the various types defined in math/big.

When you write a number literal, such as 3.14, the Go compiler needs to parse
it to a specific type (float64, in this case). The Go spec2 defines how you can
write numbers. Let’s have a look at some examples.

num_lit.go
package main

import (
"fmt"

)

func main() {
// Integer
printNum(10) // 10 of type int
printNum(010) // 8 of type int
printNum(0x10) // 16 of type int
printNum(0b10) // 2 of type int
printNum(1_000) // 1000 of type int <1>

// Float
printNum(3.14) // 3.14 of type float64
printNum(.2) // 0.2 of type float64
printNum(1e3) // 1000 of type float64
printNum(0x1p-2) // 0.25 of type float64

// Complex
printNum(1i) // (0+1i) of type complex128
printNum(3 + 7i) // (3+7i) of type complex128
printNum(1 + 0i) // (1+0i) of type complex128

}

func printNum(n interface{}) {
fmt.Printf("%v of type %T\n", n, n)

}

2. https://golang.org/ref/spec#Lexical_elements
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_ serves as the thousands separator. It makes big numbers much more
readable for us humans.

1e3 is known as scientific notation.

0x1p-2 is called a hexadecimal floating-point literal in the Go specification and
is following the IEEE 754 2008 specification. To calculate the value, do the
following:

• Compute the value before the p as a hexadecimal number. In this example
it’s 0x1 = 1.

• Compute the value after the p as 2 to the power of that value. In this
example it’s 2-2 = 0.25.

• Finally, multiply the two numbers, in this example, 1 * 0.25 = 0.25.

Further Reading
Lexical Elements in the Go Specification

golang.org/ref/spec#Lexical_elements

Scientific Notation on Wikipedia
en.wikipedia.org/wiki/Scientific_notation

IEEE 754 on Wikipedia
en.wikipedia.org/wiki/IEEE_754

Integer Literals
golang.org/ref/spec#Integer_literals

Floating-Point Literals
golang.org/ref/spec#Floating-point_literals

Imaginary Literals
golang.org/ref/spec#Imaginary_literals
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