Northwind Elixir Traders

Learn Elixir and database modeling with
Ecto and SQLite, all in one project

Isaak Tsalicoglou OVERBRING

Northwind Elixir Traders

Learn Elixir and database modeling with Ecto and SQLite, all in one
project

[saak Tsalicoglou

© 2025 Isaak Tsalicoglou, OVERBRING Labs™

O 00 9 o0 a0 WN B

[y
(o]

Chapter 10: Importing data from a dynamic
repository

In the previous chapter we learned the basics of creating and modifying associations using put_assoc/4 and cast_-
assoc/3. This can be a confusing topic, even when using fictional examples. If we want to learn more easily through
practice, we would benefit from an extensive dataset to play with. The toy dataset of the original Northwind Traders
database can fulfill that role, but we must import the data into whatever tables we have modeled thus far.

Seeding the database

To make sure that your database and mine are at the same state, let’s seed the database with a fresh set of demo data.
First, exit IEx and rebuild the database:

mix ecto.drop && mix ecto.create && mix ecto.migrate && iex -S mix

Then, copy and paste the following code line-by-line into your IEx session to “seed” the database with a clean
set of data for demonstration purposes in the first half of this chapter, before we proceed with actual data from the
Northwind Traders database:

alias NorthwindElixirTraders.i{Repo, Category, Product, Supplier?t

[[1, "Post-Apocalyptic Provisions"], [2, "Arcane Artifacts"]] |> Enum.map (&(Enum.zip([:id, :name],) >\
Map.new)) |> Enum.map (&Category.changeset(%Categoryit,) |> Repo.insert)
[[1, "Radroach & Sons"], [2, "TranStar Disposals & Acquisitions"]] [> Enum.map(&(Enum.zip([:id, :name], \

) |> Map.new)) |[> Enum.map(&Supplier.changeset (%Supplieri?,) |> Repo.insert)

[[1, "BlamCo Not-Cheese Spread", "1 tin - 250 g", 4.99, 1, 1], [2, "Elixir of Maybe-Healing", "1 bottle - \

330 mL", 19.99, 2, 11, [3, "Wabbajug (™ pending)", "1 piece", 2999.99, 2, 2], [4, "Mimic Repellent Spray",
"1 can - 50 g", 1337, 1, 21, [5, "Junk Jet Fuel", "1 bottle", 45, 1, 111 |> Enum.map(&(Enum.zip([:id, :na

me, :unit, :price, :category_id, :supplier_id],) |> Map.new)) |> Enum.map(&Product.changeset (%Product{?

,) |> Repo.insert)

Alternatively, copy and paste the lines of code from this URL: https://pastebin.com/raw/U0H36ZaX

Fetching the original Northwind Traders data

Wikiversity provides a text file (also archived here) that can be used to recreate the original database, including the
records of its various tables. There are a few ways we could turn this text file into a source of data for our own database.
Here they are, in order of decreasing hassle.

Option 1: convert the original file to our conventions

We could use sed on the terminal to search and replace the column names in the file so that they reflect the naming
scheme we used; for example, id instead of CategoryID, name instead of SupplierName, and so on. We would also
need to do the same with all foreign key names. Note that we wouldn’t have to do this to address the names of all tables
beginning with a capital letter, since SQLite is case-insensitive with regards to table and column names. However, we
would have to address the difference in naming between the CamelCase of “OrderDetails” and the “snake case” of
our future “order_details” table (which we haven’t yet dealt with). Then, we would have two options:

https://hexdocs.pm/ecto/Ecto.Changeset.html#put_assoc/4
https://hexdocs.pm/ecto/Ecto.Changeset.html#cast_assoc/3
https://hexdocs.pm/ecto/Ecto.Changeset.html#cast_assoc/3
https://pastebin.com/raw/U0H36ZaX
https://en.wikiversity.org/wiki/Database_Examples/Northwind/SQLite
https://archive.is/KatmG

O 00 N O oW N R

N I = S S
a > W NP o

O 00 N O oW N R

R
NG

Chapter 10: Importing data from a dynamic repository 151

« Option 1a: After that, we could write some Elixir code that parses all the INSERT INTO SQL statements of the
text file and converts them into INSERT INTO SQL statements that we can execute using Repo.query/3.

« Option 1b: Alternatively, we could write some Elixir code that parses all the INSERT INTO SQL statements of
the text file and converts them into maps, which we can then persist using Repo.insert/2.

In either case, we would need to determine the order of columns in the original CREATE TABLE statement of each
table, either by hard-coding or parsing the column order. With this information, we would then be able to correctly
parse and interpret the order of values from the original INSERT INTO statements. Next, we would need to convert
these values to match the order of columns in our Elixir/Ecto implementation of the database, or to construct a map
that properly associates the values from the original INSERT INTO statements with the correct fields in the schemas
we defined for Product, Category, Supplier, and so on.

As for executing SQL from within Ecto, here is an example of how this works:

iex> {:0k, r} = Repo.query("SELECT % FROM Products;")

{:0k,
%Exqlite.Result{
command: :execute,
columns: ["id", "name", "unit", "price", "inserted_at", "updated_at",
"category_id", "supplier_id"],
rows: [

[1, "BlamCo Not-Cheese Spread", "1 tin - 250 g", 4.99,
"2025-02-23T16:49:497", "2025-02-23T16:49:492", 1, 1],

[5, "Junk Jet Fuel", "1 bottle", 45, "2025-02-23T16:49:49Z",
"2025-02-23T16:49:49z2", 1, 1]

] r

num_rows: 5

3y

Note how the struct of the result r of the query returned by Exqlite contains a : columns field with a list of the
columns in the order in which the values are reported for each row in : rows. Therefore, if you can do this:

iex> Enum.zip(zr.columns, hd(r.rows))

[
i'id", 1%,
{"name", "BlamCo Not-Cheese Spread"%,
f"unit", "1 tin - 250 g"?%,
{"price", 4.99%,
{"inserted_at", "2025-02-23T16:49:4972"%,
{"updated_at", "2025-02-23T16:49:497"%,
{"category_id", 1%,
{"supplier_id", 1%

...then you can also do the following, to convert the results of the query into a list of maps:

https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.html#query/4
https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2

N oo A WwN

Chapter 10: Importing data from a dynamic repository 152

iex> Enum.map(r.rows, &(Map.new(Enum.zip(Enum.map(xr.columns, £n x -> String.to_atom(x) end),))))
[
%
id: 1, name: "BlamCo Not-Cheese Spread", unit: "1 tin - 250 g", category_id: 1, price: 4.99,
supplier_id: 1, inserted_at: "2025-02-23T16:49:49Z", updated_at: "2025-02-23T16:49:497"
.

Does this one-liner work? Yes. Will you scratch your head when you return to such code in the future? Also
yes. Should you write such code in . ex files? It depends on how much you hate your future self!

Note that the r struct contains no information about the types of the columns; thus, the values of any datetime
fields, such as :updated_at and :inserted_at, will not be automatically converted to a DateTime struct! Though
the original database doesn’t contain such timestamps, the Orders and Employees tables include the OrderDate and
BirthDate fields, respectively, that we would need to deal with.

Option 2: do as the web page instructs, and then use a second Ecto repo

Alternatively, we can follow the instructions within the SQL file shown on the web page—and that’s in fact what we
will do. By executing all SQL statements, we will recreate the Northwind Traders database in a new SQLite . db file.
This will result in the NorthwindTraders-original.db database file that you’ve seen me refer to a few times thus
far.

First, you could copy and paste the SQL text from the Wikiversity page (also archived here) into a text file, e.g.
named nt.sql. Then you can feed it into sqlite3 to execute all statements and create the database:

$ sqlite3 -batch -echo NorthwindTraders-original.db < nt.sql

You should now have the original Northwind Traders database as the NorthwindTraders-original.db SQLite
file.

So far we’ve dealt with our own database, which is managed by Ecto using Repo and the northwind_elixir_-
traders_repo.db database file, the name of which we defined in config.exs back in Chapter 1. We can write an
Elixir module that selectively imports some of the data from the original database file into our Repo. “Selectively” and
“some”, because we have not yet implemented all tables.

Using a dynamic Ecto repo

Our Elixir application has been configured to use what we have so far called Repo, defined in repo.ex, backed by the
SQLite database file defined in config.exs. How can we open a second database to pull data from it?

The answer is: dynamic repositories, and the put_dynamic_repo/1 function in particular. Remember that when
we configured our repository back in Chapter 1, we also added it to the supervision tree of our application with
the one-for-one strategy (strategy: :one_for_one in application.ex). This means that NorthwindElixir-
Traders.Repo is a process that accesses the database file using the Ecto SQLite3 database adapter, is a child process
of the NorthwindElixirTraders application. Repo will be restarted if it crashes, without affecting other child
processes of our application.

Since what we alias as Repo is a process, we can find out its PID (process identifier) within the BEAM VM by using
Elixir’'s Process module. Note that the PID value doesn’t need to be the same on your machine:

https://en.wikiversity.org/wiki/Database_Examples/Northwind/SQLite
https://archive.is/KatmG
https://hexdocs.pm/ecto/replicas-and-dynamic-repositories.html#dynamic-repositories
https://hexdocs.pm/ecto/Ecto.Repo.html#c:put_dynamic_repo/1

oo W N

Chapter 10: Importing data from a dynamic repository 153

iex> Process.whereis(Repo)
#PID<0.298.0>

What we want to do is to start another process, so that we can connect to the original Northwind Traders database
file. We achieve this by using the start_link/1 function of Repo and providing the necessary options (opts) that
configure the connection to the database dynamically, i.e. not by relying on configuration values in config.exs.

Following the documentation on dynamic repositories, we need to start another repository process by providing a
:name. Since we are not using PostgreSQL, we again ignore the :hostname, :username and : password options and
only define the :database option along side a name. Note that Repo.start_link/1 returns one of the following
tuples:

« $:0k, pid()% in case the call was successful, with the PID of the new repository process as its elem(1).

« {:error, {:already_started, pid()?}} in case the repository with that name has already been started. By
default, “that name” is what’s already defined in config.exs.

« {:error, term()? if anything else went wrong.

For example, we can find out the PID of the repo that connects to our Northwind Elixir Traders SQLite database
like so:

iex> Repo.start_link
{:error, {:already_started, #PID<0.298.0>}}

We can also get its configuration using the config/0 function. This reflects the settings we have provided in
config.exs:

iex> Repo.config

[
telemetry_prefix: [:northwind_elixir_traders, :repo],
otp_app: :northwind_elixir_traders, timeout: 15000, pool_size: 10,
database: "northwind_elixir_traders_repo.db"

Thus, we can also start a new repository, which we will be calling : nt:

iex> {:0k, nt_pid} = Repo.start_link(name: :nt, database: "NorthwindTraders-original.db")
$:0k, #PID<0.449.0>}%

In case you didn’t pattern-match on the tuple to have the PID in nt_pid, you can get the PID value as before, by
looking for the process named :nt:

iex> Process.whereis(:nt)
#PID<0O.449.0>

We can also see which repositories are running:

iex> Ecto.Repo.all_running
[:nt, NorthwindElixirTraders.Repo]

Now that the new repo has been dynamically started, we need to switch to it by using the put_dynamic_repo/1
function. We can also verify that the switch has happened by using get_dynamic_repo/0:

https://hexdocs.pm/ecto/Ecto.Repo.html#c:put_dynamic_repo/1
https://hexdocs.pm/ecto/Ecto.Repo.html#c:get_dynamic_repo/0

0 N o0 gl W NP

a M W N

Chapter 10: Importing data from a dynamic repository 154

iex> Repo.put_dynamic_repo(:nt)
iex> Repo.get_dynamic_repo
:nt

Now, any interaction with Repo hits the NorthwindTraders-original.db database. Thus, it’s no surprise that
the following function call that uses the NorthwindElixirTraders.Product schema will fail, since the schema
doesn’t match the schema of the Products table in the original database:

iex> Repo.all(Product)
*% (Exqlite.Exrror) no such column: p0@.id

SELECT p0."id", p0."name", pO."unit", p0O."price", p0O."category_id", pO."supplier_id", p0O."inserted_at", pO\

."updated_at" FROM "products" AS pO
(ecto_sql 3.12.1) lib/ecto/adapters/sql.ex:1096: Ecto.Adapters.SQL.raise_sql_call_error/1
(ecto_sql 3.12.1) lib/ecto/adapters/sql.ex:994: Ecto.Adapters.SQL.execute/6
(ecto 3.12.5) lib/ecto/repo/queryable.ex:232: Ecto.Repo.Queryable.execute/4
(ecto 3.12.5) lib/ecto/repo/queryable.ex:19: Ecto.Repo.Queryable.all/3

Meanwhile, we can pull data using SQL queries just fine, like we did before; only, this time, the queries hit the
original Northwind Traders database, since the active repo is not NorthwindElixirTraders.Repo, but :nt:

iex> Repo.query("SELECT % FROM Categories;")

05:59:00.593 [debug] QUERY OK db=0.1ms idle=1382.4ms
SELECT COUNT (%) FROM Categories; []
{:0k, %Exqlite.Resulticommand: :execute, columns: ["COUNT(%x)"], rows: [[8]], num_rows: 1%}%

Implementing a data importer module

To import the data from the original Northwind Traders database into Northwind Elixir Traders, we need to map the
data from those SQL SELECT queries onto the existing schemas. Thus, we can implement a module that performs the
following tasks that match the one to the other:

« Primary keys named “SomethingID” turn into the :id primary key of the Somethings table.

« Columns named in CamelCase are converted to “snake case”, i.e. FirstName turns into first_name.

» Foreign-key names are only converted to snake case.

« By our own convention, a column of the “Somethings” table that’s named “SomethingName” becomes the field
:name.

« Any column with a name that contains “Date” represents either a date or a datetime field, depending on the
original Northwind Traders schemas.

This module should also include functions that execute a SELECT * on a table of Northwind Traders and process
the query results into maps that can then be cast using a changeset function, since this is data coming from outside
our application.

Let’s start by creating a new file named data_importer.ex under 1ib/northwind_elixir_traders/. In the
new NorthwindElixirTraders.DataImporter module we will be adding all the helper functions that will perform
these tasks. We can start by adding:

1. a @name module attribute for the internal name we’ll give to the dynamic repo, and one (@database) indicating
the SQLite file for this dynamic repo,

O 00 N 0o o W N

W W W NNNNMNDNMNDNDNNMNNODMDNRPRERERRREPRPREPRPRPEPRPRPRPR
N P O O 0 N0 a0 WN P O VOV O N0 P wNN PP o

Chapter 10: Importing data from a dynamic repository 155

2. a function that wraps Repo.start_link/1, but with a name that’s easier to remember, and

3. a “preparatory/cleanup” function that switches the repository from anything else to the :nt repository before
any SQL is executed, and then back to the previous repository (here, NorthwindElixirTraders.Repo) after a
function is run.

We’ll also require the Logger module, so that we get access to its macros for logging the switch to the : nt dynamic
repository and back to our Repo. We can also make this module detect whether the dynamic repository process has
already been started, and start if it, if it hasn’t.

Figure 13.1. The Datalmporter module’s data_importer.ex with switch/0 and switch/1 to switch between Repo and :nt

defmodule NorthwindElixirTraders.DataImporter do
require Logger
alias NorthwindElixirTraders.Repo

@name :nt
@database "NorthwindTraders-original.db"

def start() do
if is_nil(Process.whereis(@name)),
do: Repo.start_link(name: @name, database: @database)
end

def switch(name) when name in [@name, Repo] do
try do
if name == @name, do: start()
Repo.put_dynamic_repo(name)
Logger.debug("Switched to #iname?")
i:0k, Repo.get_dynamic_repo()}
catch
>
Logger.debug("Error: could not switch to #iname®")
{:error, Repo.get_dynamic_repo()}
end
end

def switch() do
case Repo.get_dynamic_repo() do
@name -> switch(Repo)
_ -> switch(@name)
end
end
end

This way, we’ll be calling switch(:nt) at the beginning of every function that gets data from the Northwind
Traders database, and call switch() again before its return, to reactivate the Repo, which handles the Northwind
Elixir Traders database. Thus, functions that pull data from the Northwind Traders database briefly “pop out” of our
standard interaction mode with Repo (the one configured in config.exs) and back to it after our queries are done.
We can wrap Repo.query/1 within our own nt_query/1 function that takes the SQL statement as its sole argument:

A different way of going about this is to avoid switching back and forth with the switch/0 functions above.
Instead, we can use Ecto.Adapters.SQL.query/4, which takes the target repo name (:nt), the SQL query,
and the query parameters as its third arguments.

https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.html#query/4

O 00 N 0 o B W NP

O 00 N O oW N R

NN R R R P R P R R R R
P ® 0 om0 0O bM®WNEP O

Chapter 10: Importing data from a dynamic repository 156

Figure 13.2. Wrapper function to temporarily run queries on the original Northwind Traders database

defmodule NorthwindElixirTraders.DataImporter do

def nt_query(sql) when is_bitstring(sql) do
switch(:nt)
result = Repo.query(sql)
switch()
result
end
end

We’ll need to execute SQL on tables within the original database, so it would be good to have the list of table names
available. Since I don’t like to hard-code data in my code, I'll add:

1. a function that converts a singular row name to plural, to map a row name to a table name,

2. a function that does the opposite, i.e. converts a plural table name to the singular name of its row,
3. a function that returns the list of table names in the Northwind Traders database.

Let’s implement (1) and (2):

Figure 13.3. Helper functions that singularize and pluralize rows’ and tables’ names, respectively

defmodule NorthwindElixirTraders.DataImporter do

def singularize(plural) when is_bitstring(plural) do
ending = String.slice(plural, -3..-1)

if ending == "ies" do
String.replace(plural, ending, "y")
else
String.trim(plural, "s")
end
end

def pluralize(singular) when is_bitstring(singular) do
last_char = String.last(singular)

case last_char do
"y" -> String.trim(singular, last_char) <>
_ -> singular <> "s"
end

end

les

end

With these two functions we can get from the table name to the corresponding row name that we use in the
Northwind Elixir traders database, and vice versa. Note that we don’t need to explicitly start the dynamic :nt repo,
as it is done for us automatically, if it’s not started yet.

