
Functional

Design Patterns
Express.js

for

elegant, maintainable Node.js backends.
A step-by-step guide to building

POST /books HTTP/1.1
Content-Type: application/json
Content-Length: 292

{
 "author": "Jonathan Lee Martin",
 "category": "learn-by-building",
 "language": "JavaScript"
}

!íÈ�è¯ÏÈ�Á ��á¯¦È R�èè�ÝÈá ¥ÏÝ �þÚÝ�ááʧ»á

� áè�Úʋ�ÿʋáè�Ú ¦í¯�� èÏ �í¯Á�¯È¦ �Á�¦�Èèʢ Ç�¯Èè�¯È��Á� AÏ��ʧ»á
���¾�È�áʧ

By Jonathan Lee Martin

Copyright © 2019 by Jonathan Lee Martin

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the author prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, contact:

Jonathan Lee Martin
hello@jonathanleemartin.com
https://jonathanleemartin.com

“Node.js” and the Node.js logo are trademarks of Joyent, Inc.

Scripture quotations taken from the New American Standard Bible® (NASB).
Copyright © 1960, 1962, 1963, 1968, 1971, 1972, 1973, 1975, 1977, 1995 by The Lockman Foun-
dation. Used by permission. www.Lockman.org

¯¯¯

mailto:hello@jonathanleemartin.com
https://jonathanleemartin.com

¬�Úè�Ý ɀ

@¯��Á�ù�Ý�

Often the same behavior needs to be added to a group of routes. For example, most
backends log every incoming request to the terminal for debugging and production au-
dits. How could we add logging to Pony Express?

Right now, it’s simple enough: we just prepend console.log() to each route function.
For example, we could start in routes/emails.js :

routes/emails.js

[···]

let getEmailsRoute = (req, res) => {
+ console.log('GET /emails');

[···]
};

let getEmailRoute = (req, res) => {
+ console.log('GET /emails/' + req.params.id);

[···]
};

let createEmailRoute = async (req, res) => {
+ console.log('POST /emails');

[···]
};

[···]

Well, that’s awful. console.log() is basically copy-paste with minor changes, so if
we ever want to change the logging style, we would need to update each instance of
console.log() . We can solve that partly by moving the duplication into a function, but
we will still need to invoke that function in every route.

ɀɀ

ɀɁ ¬�Ùç�Ü ŶƼ @¯��Á�ø�Ü�

Go ahead and delete all those console.log() statements from routes/emails.js .
How can we prevent this duplication and add logging behavior to all routes without
modifying them?

ÝÏáá íèè¯È¦ ù¯è¬ @¯��Á�ù�Ý�

Express provides a method — app.use() — to insert a function that runs before any
routes below it. Let’s try it in index.js :

index.js

[···]

let app = express();

+ let logger = (req, res, next) => {
+ console.log(req.method + ' ' + req.url);
+ };

+ app.use(logger);
app.use('/users', usersRouter);
app.use('/emails', emailsRouter);

[···]

Notice the signature of the logger() function. Like a route function, it receives a re-
quest and response object, but it also receives a third argument called next . Any func-
tion with this signature is calledmiddleware.

When a request comes in, the logger() middleware function runs before any of the
routers added below it with app.use() . These functions are called middleware because
they are sandwiched between each other, and the collective sandwich of these middle-
ware functions is called themiddleware stack.

ÜÎàà ìçç¯È¦ ø¯ç¬ @¯��Á�ø�Ü� ɀɂ

Request Response

logger(req, res, next)

usersRouter(req, res, next)

emailsRouter(req, res, next)

next

next

next

app(req, res)

Middleware
Stack

app.use(logger);

app.use(usersRouter);

app.use(emailsRouter);

Figure 5.1: Each middleware function in the stack gets to run before those below it.

You may not have realized it, but there were already a couple layers in your middleware
stack: usersRouter() and emailsRouter() are middleware functions! Every instance
of app.use() adds a new layer to the bottom of the stack.

Hop into Insomnia and try a few requests like GET /users and GET /emails . In the
terminal, the backend now prints out the request method and path for any route! How-
ever, Insomnia seems to be hanging:

Figure 5.2: Looks like the request is hanging.

What’s going on? Middleware functions have a lot of power: not only can they be
inserted before routes, but they can decide whether to continue to the routes or skip
them altogether! To continue to the routes — the next layer in our middleware stack —
the middleware must invoke the third argument it received, next() :

ɀɃ ¬�Ùç�Ü ŶƼ @¯��Á�ø�Ü�

index.js

[···]

let logger = (req, res, next) => {
console.log(req.method + ' ' + req.url);

+ next();
};

[···]

Try a few requests with Insomnia. The backend should still log each request, but now
the routes should behave as they did before the hang.

Way to go, you wrote your first middleware function! Middleware is both a general de-
sign pattern and a concrete feature in backend libraries like Express. Express Middle-
ware helps us reuse complex behaviors — sometimes called cross cutting concerns —
across routes. Since middleware tends to be entirely decoupled from the routes, it’s in-
credibly easy to reuse middleware in other projects. In fact, let’s move logger() into a
new file called lib/logger.js :

lib/logger.js

+ let logger = (req, res, next) => {
+ console.log(req.method + ' ' + req.url);
+ next();
+ };
+
+ module.exports = logger;

Don’t forget to wire it up in index.js :

index.js

const express = require('express');
+ const logger = require('./lib/logger');

[···]

- let logger = (req, res, next) => {
- console.log(req.method + ' ' + req.url);
- next();
- };

[···]

R�àà¯È¦ ��ç� çÎ UÎìç�à ɀɄ

R�áá¯È¦ ��è� èÏ UÏíè�á

You know what else is irritating? Parsing JSON-formatted request bodies in
createEmailRoute() and updateEmailRoute() ! Let’s make a middleware func-
tion to do that instead. Create a new file called lib/json-body-parser.js :

lib/json-body-parser.js

+ const readBody = require('./read-body');
+
+ let jsonBodyParser = async (req, res, next) => {
+ let body = await readBody(req);
+ let json = JSON.parse(body);
+ next();
+ };
+
+ module.exports = jsonBodyParser;

Unlike our logger() middleware, jsonBodyParser() does some work that needs to
be passed to the routes. How should we feed the parsed JSON to the routes in the next
layer? In Express, it’s common to add a property to the request object. We’ll put the
parsed JSON body in req.body :

lib/json-body-parser.js

[···]

let jsonBodyParser = async (req, res, next) => {
let body = await readBody(req);

- let json = JSON.parse(body);
+ req.body = JSON.parse(body);

next();
};

[···]

Now any route that comes after jsonBodyParser() can access the JSON-formatted
request body in req.body . Where should jsonBodyParser() go in the middleware
stack? We could try adding it to index.js like this:

ɁȻ ¬�Ùç�Ü ŶƼ @¯��Á�ø�Ü�

index.js

const express = require('express');
const logger = require('./lib/logger');

+ const jsonBodyParser = require('./lib/json-body-parser');

[···]

app.use(logger);
+ app.use(jsonBodyParser);

app.use('/users', usersRouter);
app.use('/emails', emailsRouter);

[···]

Since all the /users and /emails routes come after jsonBodyParser() runs, we can
drop the readBody() calls from createEmailRoute() and updateEmailRoute() in
routes/emails.js :

UÎìç� @¯��Á�ø�Ü� Ɂȼ

routes/emails.js

const express = require('express');
- const readBody = require('../lib/read-body');

const generateId = require('../lib/generate-id');
const emails = require('../fixtures/emails');

[···]

let createEmailRoute = async (req, res) => {
- let body = await readBody(req);
- let newEmail = { ...JSON.parse(body), id: generateId() };
+ let newEmail = { ...req.body, id: generateId() };

emails.push(newEmail);
res.status(201);
res.send(newEmail);

};

let updateEmailRoute = async (req, res) => {
- let body = await readBody(req);

let email = emails.find(email => email.id === req.params.id);
- Object.assign(email, JSON.parse(body));
+ Object.assign(email, req.body);

res.status(200);
res.send(email);

};

[···]

Retry your Insomnia requests for POST /emails and PATCH /emails/1 . They should
work just as before!

UÏíè� @¯��Á�ù�Ý�

Sadly not all is well. Try sending a GET /emails request with Insomnia. The request
seems to be hanging again because an exception is blowing everything up:

GET /emails
(node:44439) UnhandledPromiseRejectionWarning:

SyntaxError: Unexpected end of JSON input
at JSON.parse (<anonymous>)
at jsonBodyParser (lib/json-body-parser.js:5:19)
[···]

ɁȽ ¬�Ùç�Ü ŶƼ @¯��Á�ø�Ü�

What’s going on? Well, not every route expects a request body, much less a JSON-
formatted body. But jsonBodyParser() runs before every single route as though
a JSON-formatted request body is guaranteed. GET requests don’t have a body, so
JSON.parse() is trying to parse an empty string.

There are a few approaches to fix this bug. The typical solution is to make jsonBodyParser()

a bit more robust to edge cases with some if...else statements. However, apart
from making our code uglier, it only postpones other bugs that will emerge because
it won’t solve the underlying design problem: only two routes in our backend expect
JSON-formatted request bodies!

Inserting middleware with app.use() is a bit like using global variables: tempting and
easy, but deadly to reusable software. With few exceptions, “global middleware” is a bad
design choice because it is more difficult to “opt-out” of middleware in a few routes than
it is to “opt-in” where it’s needed.

Request Response

logger(req, res, next)

usersRouter(req, res, next)

emailsRouter(req, res, next)

next

next

next

app(req, res)

jsonBodyParser(req, res, next)next createEmailRoute(req, res, next)next

GET /emails

POST /emails

getEmailsRoute(req, res, next)next

Route
Middleware

Figure 5.3: Route middleware is like a personalized stack for just this route.

Instead of adding global middleware with app.use() , we can specify middleware for
individual routes with .get() and its siblings. Let’s try it in routes/emails.js :

	Acknowledgments
	Technical Reviewers

	Introduction
	Why Express?
	Approach
	Topics
	Prerequisites
	Let's Get Started

	I Express Essentials
	How Servers Talk
	HTTP: The Core Abstraction of the Web
	Installing telnet
	On Linux
	On macOS

	An HTTP Conversation with telnet
	Talking to a Backend API
	Making Requests with Insomnia
	Go Further

	Responding to Requests
	Simple Servers with the http Module
	Speaking HTTP over Telnet
	Responding to Different Routes
	Hello, Express
	Express Shorthands
	Go Further
	Multiple Response Types

	Express Router
	Refactoring with the Router Pattern
	Express Router
	Functions with Methods
	Routes with Dynamic Segments
	Using Multiple Routers
	Extracting Routers into Files
	Go Further
	Routing on the Accept Header

	Working with Request Bodies
	Request Body Lifecycle
	Reading Request Bodies
	Finishing Up the Create Endpoint
	Update and Delete
	Express .route() Method
	Go Further

	II Middleware
	Middleware
	Cross Cutting with Middleware
	Passing Data to Routes
	Route Middleware
	Middleware is Everywhere
	Go Further
	Error Handling Middleware

	Common Middleware
	Logging with Morgan
	Body Parser
	Middleware Factories
	Compression
	Serving a Frontend
	File Uploads with Multer
	Serving Static Files with a Path Prefix
	Accepting Multiple Body Types
	Go Further
	URL Encoded Bodies
	PATCH Things Up
	MIME Types

	III Authentication & Authorization
	Basic Authentication
	Authorization Header
	Handling Authentication with Middleware
	Graceful Global Middleware
	Requiring Authentication
	Creating a Middleware Factory
	Currying and Middleware Factories
	Go Further
	Hashing Passwords

	Authentication with JSON Web Tokens
	Proof of Verification
	JSON Web Tokens
	Issuing Tokens
	Signing Tokens
	Dissecting a Token
	Accepting JSON Web Tokens
	Dealing with Invalid Tokens
	Decoupling with Middleware Factories
	Go Further
	Environment Variables

	Authorization Design Patterns
	Adding Authorization to a Route
	Authorization Design Flaws
	Extracting Authorization to Middleware
	Policies and Enforcers
	Simplifying Policies
	Enforcing Policies with Exceptions
	Sustainable Security
	Go Further
	Enforce All the Things
	Private Attachments

	Index

