
Functional

Design Patterns
Express.js

for

elegant, maintainable Node.js backends.
A step-by-step guide to building

POST /books HTTP/1.1
Content-Type: application/json
Content-Length: 292

{
 "author": "Jonathan Lee Martin",
 "category": "learn-by-building",
 "language": "JavaScript"
}

!íÈ�è¯ÏÈ�Á ��á¯¦È R�èè�ÝÈá ¥ÏÝ �þÚÝ�ááʧ»á

� áè�Úʋ�ÿʋáè�Ú ¦í¯�� èÏ �í¯Á�¯È¦ �Á�¦�Èèʢ Ç�¯Èè�¯È��Á� AÏ��ʧ»á
���¾�È�áʧ

By Jonathan Lee Martin

Copyright © 2019 by Jonathan Lee Martin

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the author prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, contact:

Jonathan Lee Martin
hello@jonathanleemartin.com
https://jonathanleemartin.com

“Node.js” and the Node.js logo are trademarks of Joyent, Inc.

Scripture quotations taken from the New American Standard Bible® (NASB).
Copyright © 1960, 1962, 1963, 1968, 1971, 1972, 1973, 1975, 1977, 1995 by The Lockman Foun-
dation. Used by permission. www.Lockman.org

¯¯¯

mailto:hello@jonathanleemartin.com
https://jonathanleemartin.com

¬�Úè�Ý Ⱦ

�þÚÝ�áá UÏíè�Ý

Backend APIs often respond to hundreds or thousands of unique method and path
combinations. Each method and path combination — such as GET /users or
POST /emails — is called a route. But no matter how many routes your backend API
supports, every single request will need to be processed by a single request handler
function. That means index.js will grow with every new route: even if each route took
only one line of code, that’s a large file and a nightmarish recipe for merge conflicts.

How can we architect the request handler callback such that, for every new route, the
number of files grows while the average file length stays the same? Put another way,
how do we design a backend so the codebase scales horizontally instead of vertically?

U�¥��èÏÝ¯È¦ ù¯è¬ è¬� UÏíè�Ý R�èè�ÝÈ

The easiest way to accomplish this is by applying the Router design pattern, not to be
confused with Express’s Router API. The Router design pattern is a common refactor to
obliterate ballooning switch statements or if...else statements that share similar
predicates.

There are a few steps to apply this design pattern:

1. Extract the body of each case into a function.
2. Replace the body of each case with an invocation of that function.
3. Create a map from each predicate condition to its corresponding function.
4. Replace the switch or if...else statement with one function lookup and invo-

cation.

One of the strengths of this refactor is that, at each step in the refactor, the code should
still run so you can catch bugs early on. Try not to skip ahead, but take the refactor one
step at a time.

In the request handler of index.js , extract the body of each case into a function:

ȽȾ

Ƚȿ
¬�Ùç�Ü ŴƼ �ýÙÜ�àà UÎìç�Ü

index.js

[···]

let app = express();

+ let getUsersRoute = (req, res) => {
+ res.send(users);
+ };
+
+ let getEmailsRoute = (req, res) => {
+ res.send(emails);
+ };

app.use((req, res) => {
[···]

The second step is to replace the body of each case with its function. If your functions
were invoked with slightly different arguments, you’d need to do a little extra refactoring.
Since both routes have the same function signature, we can continue with the refactor:

index.js

[···]

app.use((req, res) => {
let route = req.method + ' ' + req.url;

if (route === 'GET /users') {
- res.send(users);
+ getUsersRoute(req, res);

} else if (route === 'GET /emails') {
- res.send(emails);
+ getEmailsRoute(req, res);

} else {
res.end('You asked for ' + route);

}
});

[···]

Our code should still work after each step in the refactor, so give your GET /users and
GET /emails routes a quick test with Insomnia.

U�¥��çÎÜ¯È¦ ø¯ç¬ ç¬� UÎìç�Ü R�çç�ÜÈ Ƚɀ

The third step is to create some sort of mapping from the predicate condition to a corre-
sponding route. Since the if...else conditions are always a comparison with a string
like "GET /emails" , we can use a plain ol’ JavaScript object:

index.js

[···]

let getUsersRoute = (req, res) => {
res.send(users);

};

let getEmailsRoute = (req, res) => {
res.send(emails);

};

+ let routes = {
+ 'GET /users': getUsersRoute,
+ 'GET /emails': getEmailsRoute,
+ };

app.use((req, res) => {
[···]

The fourth and final step is to replace the if...else cases with a single lookup in the
list of routes:

ȽɁ
¬�Ùç�Ü ŴƼ �ýÙÜ�àà UÎìç�Ü

index.js

[···]

app.use((req, res) => {
let route = req.method + ' ' + req.url;

+ let handler = routes[route];

- if (route === 'GET /users') {
- getUsersRoute(req, res);
- } else if (route === 'GET /emails') {
- getEmailsRoute(req, res);
+ if (handler) {
+ handler(req, res);

} else {
res.end('You asked for ' + route);

}
});

[···]

What about that last else statement? We still need a fallback to catch any unknown
routes like GET /spam , but you could extract the logic into a separate function like
noRouteFound() to remove the if...else statement altogether:

�ýÙÜ�àà UÎìç�Ü Ƚɂ

index.js

[···]

+ let noRouteFound = (req, res) => {
+ let route = req.method + ' ' + req.url;
+ res.end('You asked for ' + route);
+ };

app.use((req, res) => {
let route = req.method + ' ' + req.url;

- let handler = routes[route];
+ let handler = routes[route] || noRouteFound;

- if (handler) {
handler(req, res);

- } else {
- res.end('You asked for ' + route);
- }

});

[···]

Send a few requests with Insomnia to make sure the routes still work. Huzzah! We elim-
inated a growing if...else statement, and in the process extracted individual routes
outside the request handler.

�þÚÝ�áá UÏíè�Ý

Now that we’ve applied the Router design pattern, which part is the “router”? In this
context, a Router is a function whose only responsibility is to delegate logic to another
function. So the entire callback to app.use() is a Router function!

Let’s make this a bit more obvious by assigning the request handler callback to a variable
before passing it to app.use() :

ȽɃ
¬�Ùç�Ü ŴƼ �ýÙÜ�àà UÎìç�Ü

index.js

[···]

- app.use((req, res) => {
+ let router = (req, res) => {

let route = req.method + ' ' + req.url;
let handler = routes[route] || noRouteFound;

handler(req, res);
- });
+ };

+ app.use(router);

app.listen(3000);

While route functions are unique to the particular backend you’re building, the router
function we extracted is common to all backends. Well, that just happens to be Express’s
flagship feature: express.Router() generates a Router function much like the one we
just wrote. Let’s swap it in!

index.js

[···]

- let routes = {
- 'GET /users': getUsersRoute,
- 'GET /emails': getEmailsRoute,
- };

- let noRouteFound = (req, res) => { ... };

- let router = (req, res) => { ... };
+ let router = express.Router();

+ router.get('/users', getUsersRoute);
+ router.get('/emails', getEmailsRoute);

app.use(router);

[···]

Whoa, look at that! This behaves identically to what we had before, but it’s much terser.
Express’s Router provides an expressive API for creating a route map with methods like
router.get() .

!ìÈ�ç¯ÎÈà ø¯ç¬ @�ç¬Î�à ȽɄ

Test out your routes with Insomnia once more — despite the mass deletions, the back-
end should respond identically to before.

!íÈ�è¯ÏÈá ù¯è¬ @�è¬Ï�á

But wait, the router() generated by express.Router() is a function, just like the
handwritten router() it replaces. If router() is a function, why does it have meth-
ods like router.get() ?

This is a recurring API design style for JavaScript libraries, and especially Express. In
fact, we already saw that express() returns a function we called app() , yet app has a
.use() method. Here’s a shortened example:

const http = require('http');
const express = require('express');

let app = express();

// `app` is definitely an object
// because it has methods like `.use()`:
app.use((req, res) => {

res.send('Hello');
});

// `app()` is definitely a function too
// because it can be invoked. These are the same:
let server = http.createServer(app);
let server = http.createServer(

(req, res) => app(req, res)
);

server.listen(3000);

In JavaScript, functions are also objects: that means they can be invoked, but also have
methods. Unsurprisingly, JavaScript functions are called function objects. In Express,
this duality makes it easy to seamlessly combine vanilla functions with libraries that in-
clude an elegant configuration API.

UÏíè�á ù¯è¬ �ÿÈ�Ç¯� Y�¦Ç�Èèá

Our server is made of many small functions, so it should be trivial to tease apart the
codebase as it grows. But before we test that theory out, let’s add a couple more routes.

	Acknowledgments
	Technical Reviewers

	Introduction
	Why Express?
	Approach
	Topics
	Prerequisites
	Let's Get Started

	I Express Essentials
	How Servers Talk
	HTTP: The Core Abstraction of the Web
	Installing telnet
	On Linux
	On macOS

	An HTTP Conversation with telnet
	Talking to a Backend API
	Making Requests with Insomnia
	Go Further

	Responding to Requests
	Simple Servers with the http Module
	Speaking HTTP over Telnet
	Responding to Different Routes
	Hello, Express
	Express Shorthands
	Go Further
	Multiple Response Types

	Express Router
	Refactoring with the Router Pattern
	Express Router
	Functions with Methods
	Routes with Dynamic Segments
	Using Multiple Routers
	Extracting Routers into Files
	Go Further
	Routing on the Accept Header

	Working with Request Bodies
	Request Body Lifecycle
	Reading Request Bodies
	Finishing Up the Create Endpoint
	Update and Delete
	Express .route() Method
	Go Further

	II Middleware
	Middleware
	Cross Cutting with Middleware
	Passing Data to Routes
	Route Middleware
	Middleware is Everywhere
	Go Further
	Error Handling Middleware

	Common Middleware
	Logging with Morgan
	Body Parser
	Middleware Factories
	Compression
	Serving a Frontend
	File Uploads with Multer
	Serving Static Files with a Path Prefix
	Accepting Multiple Body Types
	Go Further
	URL Encoded Bodies
	PATCH Things Up
	MIME Types

	III Authentication & Authorization
	Basic Authentication
	Authorization Header
	Handling Authentication with Middleware
	Graceful Global Middleware
	Requiring Authentication
	Creating a Middleware Factory
	Currying and Middleware Factories
	Go Further
	Hashing Passwords

	Authentication with JSON Web Tokens
	Proof of Verification
	JSON Web Tokens
	Issuing Tokens
	Signing Tokens
	Dissecting a Token
	Accepting JSON Web Tokens
	Dealing with Invalid Tokens
	Decoupling with Middleware Factories
	Go Further
	Environment Variables

	Authorization Design Patterns
	Adding Authorization to a Route
	Authorization Design Flaws
	Extracting Authorization to Middleware
	Policies and Enforcers
	Simplifying Policies
	Enforcing Policies with Exceptions
	Sustainable Security
	Go Further
	Enforce All the Things
	Private Attachments

	Index

