PROJECT
LIFECYCLES

How +o Reduce ?\5\6,
Release Successtul Products,
ond Twcrease Aajlity

JHANA RO

Author of Create Your buccessfu Agl e Project



Project Lifecycles

How to Reduce Risks, Release
Successful Products, and Increase
Agility

Johanna Rothman



Project Lifecycles

How to Reduce Risks, Release
Successful Products, and Increase

Agility

Johanna Rothman

\

Practical ink

No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and
retrieval system, without written permission from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility for
errors or omissions, or for damages that may result from the use
of information contained in this book.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Practical Ink was aware of a
trademark claim, the designations have been printed in initial
capital letters or in all capitals.

© Johanna Rothman. This book is available in these formats:
Ebook: 978-1-943487-31-8; Paper: 978-1-943487-32-5; Hardcover:
978-1-943487-33-2


https://leanpub.com

Chapter 7. Agile
Approaches

Agility requires culture changes to manage the team, product,
and management needs and risks. (See Section 1.1: Visualize a
Successful Agile Team Culture on page 2 for more details. But an
agile culture is not sufficient.

While each agile team is unique, each agile team has similar
characteristics.

7.1. Characteristics of an Agile Team

All agile teams, regardless of their approach, have these character-
istics in common:

o The team limits its WIP.

+ The team defaults to collaboration over solo work.

« Regularly, the team delivers value, at least internally, if not
to an external customer.

« The team realizes that while features might be done for now,
the requirements, architecture, and user experience are not
done until this version of the product ships.

« The team retrospects and considers what to do for continuous
improvement.

When teams work like this, they work in flow efficiency, control-
ling their work themselves.



Agile Approaches 83

Because they release and retrospect, they have many fewer un-
planned feedback loops. These characteristics allow the team to
manage its project, product, and portfolio risks.

That’s it.

Teams choose practices that allow them to create their specific agile
culture. One team might use iterations (a short timebox) to manage
its WIP over a one- to two-week period. A different team might
create WIP limits for the overall team.

Some teams do both because they learned that just limiting overall
WIP doesn’t work because they have a tendency for work to
accumulate in one area. (That accumulation tends to occur where
the team does not have sufficient skills and capabilities to finish the
work.)

However, when teams choose to collaborate on a given feature,
the team delivers value as early as possible. That delivery allows
the product leader to assess the feedback inside and outside the
organization, selecting the next bit of work.

The earlier the team can deliver the value, the fewer unplanned
feedback loops anyone encounters. That value allows the team to
recognize that feedback might cause changes to the requirements,
architecture, and user experience.

That is, the team recognizes the requirements, architecture, and
user experience cannot be “complete” until the product ships.

Why Specify User Experience
as Incomplete?

You might agree with me that an agile approach acknowledges
the requirements and architecture will change. But the user
experience, too?



Agile Approaches 84

Many product leaders specify the user experience inside the
requirements document, regardless of the lifecycle. I've never
understood that because as the customers see the product, they
ask for changes in the user experience and the requirements.

Instead of trying to specify the user experience, product leaders
can specify the goals of that experience. Then, as everyone
processes the internal and external feedback, the product
leader can check the goals and see if the older goals align
with the product evolution. Creating an incremental approach
to the user experience works exactly the same way as the
architecture. See Section 7.2.1: Coherent Product Architec-
tures Emerge from the Work on page 89. The user experience
emerges from the work.

That early and often delivery has other benefits. The team doesn’t
just learn from internal or customer feedback. The team also can
take a little time to learn from how they worked and how they felt
about that work.

Because agile teams limit their WIP and collaborate, they can create
short feedback loops for delivery and learning. Or, they use their
short feedback loops to reduce WIP and increase collaboration.
That’s a restatement of Little’s Law.

Agile teams also visualize their work with a team board and with
value stream maps.

7.1.1. Team Boards Visualize Progress

Since so many teams start their agile journey with Scrum, they
often start with a three-column Scrum board as in the next figure.



Agile Approaches 85

Ready In Progress Pone
| |

= —

s |

Figure 22. Three-Column Scrum Board

That board is terrific if you can keep your cycle time low and if the
team collaborates on the work. Notice that this board has only two
items in the In Progress column. So this team is collaborating and
finishing.

But too often, I see teams who are supposed to use an agile approach
but don’t have the necessary people on their team, such as enough
testers. Or, the team is also supposed to do production support.

Whatever the issue, their work gets stuck somewhere in the In
Progress column. And they don’t know where.

That’s when teams might want a different board to explicitly show
how work flows through their team. Six months ago, one of my
clients used a Kanban board like the one in the next image to show
their system of work.

ﬁg{ﬁm Ready Dev/Unit Test | || System Test Accept Done

|| /8| =8| = 8

Figure 23. Multiple Column Kanban Board

One team on its agile journey decided to focus on lowering WIP in



Agile Approaches 86

their current state. They had a significant number of production
support interruptions from a previous release. They wanted to
integrate fixes with their current product development and avoid
an Urgent or Expedite lane.

They chose to collaborate in twos or threes, either pairing or
swarming on one item at a time. Only the product leader did
not collaborate. That’s because she was overloaded, supposedly
working with two other teams as their product leader.

Read this board from the right side to the left to fully understand
it.

This team decided to wait for four items to trigger a demo and a
retrospective. Since their typical cycle time ran between one and
three days, they tended to demo and retrospect every couple of
weeks. (They also reviewed their throughput and tracked the age
of all items as in Section 1.4.1: Measures Change in Flow Efficiency
on page 7.)

To the left of Done is the Accept column. The reason the team has
a WIP limit here is that the product leader will interrupt what she’s
doing to accept stories. She asked for that WIP limit so she doesn’t
get behind.

The remaining columns are also full. When I asked the team
why they didn’t have any slack in their system, one of them said,
“We're still learning how to be most effective together. We keep
experimenting with how we pair and swarm. We’re thinking about
mobbing/ensembling on the work, but not everyone is ready for
that. But we know we need to keep our WIP low and we know we
need to keep our cycle time low to manage our interruptions”

The only column that’s not full is the Stories to Workshop column.
Some teams create a cadence for workshopping stories. This team
has a limit because their product leader wanted to workshop stories
that they wouldn’t add to a backlog for months. Instead of starting
all that work, the Stories to Workshop column is a near-term
roadmap or backlog.



Agile Approaches 87

This team controls how they work. Even so, the team has a full
board, due to the previous culture of resource efficiency.

Six months later, that team changed its board. Because the product
leader only works with this team, they no longer need WIP limits
on the Accept column. In addition, the team rarely pairs, but works
in triads. That allowed them to combine Dev/Unit Test and System
Test into one column called Dev and Test.

Every agile team deserves a board that fits their current work and
that they can use as a basis for experimentation. If your project
has technical risks, your board might need to have a column for
prototypes or experimentation. That’s why the project, product,
and organizational risks can change the approach a team can use.

Consider these questions for your board:

« Do we have enough information from our current board? If
not, what else do we need?

« Do we need board-based WIP limits? Or, do we need column-
based WIP limits?

« Do we have a policy about WIP limits? That is, do we allow
ourselves to exceed them?

Boards aren’t the only visualization that can help teams. Value
stream maps can help a team visualize and isolate delays and
bottlenecks.

7.1.2. Value Stream Maps Help Teams
Visualize Problems

A value stream map shows two kinds of time: work time and wait
time. The cycle time is the addition of the work time and the wait
time, as in this figure.



Agile Approaches 88

Person 1 || Person 2 Person 3 || Person 4
works on || on that onthat || onthat Item done
item item item item
Person 1 || Person 2 Person 3 || Person 4 V‘i‘;}"e"dﬂr’:ﬁ;m"i:"
Work time | Puration || Duration Duration || Duration blue, above the line
Wait time I there is no Wait Wait Wzif dﬂme: Add all
wait time : : the durations in
between durafgon duraf.lon red, below the line
Person 14 2, until until
nothing in the Person 3 item
wait time can warked
start done

Cycle time = Work tiwme plus Wait time. Consider rounding the total cycle time to half-day increments, not less.

Figure 24. Blank Value Stream Map

When teams estimate, they often do a reasonable job estimating the
work time. But very few people or teams estimate the wait time
accurately. Teams who work cooperatively, but primarily alone,
always have a longer cycle time than teams who collaborate.

When managers believe in resource efficiency, cooperative team
members tend to be busy all the time. However, the team can’t
finish any item faster.

Collaborative teams work together, keeping their WIP low. That
means they tend to have much less wait time for any of the items.

This is why teams need to see and manage their cycle times as a
trend. When a team changes something—even if they only change
their board—they might change their cycle time trends. When
teams learn their tendencies for cycle time, they can choose how
to work better. And they can offer 50%, 80%, or 90% confidence
levels for future predictions.

Agile approaches are deceptively easy-looking—unless your orga-
nization has a culture of extreme resource efficiency. But fake
agility thrives because of the necessary changes to the culture and
the team characteristics.

Teams, managers—everyone has questions.



Agile Approaches 89

7.2. Questions About How to Make
Agility Work

When I teach teams and managers about how to work in an agile
way, everyone asks these questions:

« If we don’t do a lot of upfront design, how can we create a
coherent product architecture?

« What if it’s too risky for our customers to take the next
release?

« How can we possibly predict when we will be done?

« We need a project manager. Why does this notion of “agile
team” not include a project manager?

Some teams also ask, “Should we use Scrum or a Kanban system
and how do we decide?”

These are valid questions because non-agile teams managed these
risks with iterative, incremental, and combination lifecycles for
years.

I'll start with the idea of creating a coherent product architecture
when the team iterates over the requirements and delivers incre-
mentally.

7.2.1. Coherent Product Architectures
Emerge from the Work

Many of the unplanned feedback loops arise from significant
architecture, requirements, or user experience changes late in the
project. Those changes cascade back and forth, where one feature
during testing causes a requirements change that then causes an
architecture change, that causes a user experience change, and so
on.



	7 Agile Approaches
	7.1 Characteristics of an Agile Team
	7.2 Questions About How to Make Agility Work

	---

