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In More OCaml John Whitington takes a meandering tour of functional programming 
with OCaml, introducing various language features and describing some classic 
algorithms. The book ends with a large worked example dealing with the production of 
PDF files. There are questions for each chapter together with worked answers and hints.
          More OCaml will appeal both to existing OCaml programmers who wish to brush 
up their skills, and to experienced programmers eager to explore functional languages 
such as OCaml. It is hoped that each reader will find something new, or see an old thing 
in a new light. For the more casual reader, or those who are used to a different functional 
language, a summary of basic OCaml is provided at the front of the book.
 
Jo  hn Whitington founded a software company which uses OCaml extensively. He 
teaches functional programming to students of Computer Science at the University of 
Cambridge. His other books include “PDF Explained” (O'Reilly, 2012) and “OCaml from 
the Very Beginning” (Coherent, 2013).     
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Preface

When I wrote “OCaml from the Very Beginning”, the intention was to have a book with no prerequisites –
a bright individual, new to programming, could follow it. Because of this, and for length concerns, plenty
of interesting material had to be omitted. This text, not being constrained in the same way, contains a
variety of topics which require some existing experience with a functional language. Those who have
read the previous text should have no problem with this one. Equally, it should be comprehensible to a
functional programmer familiar with another language such as Standard ML or Haskell. The reader may
need to make occasional reference to the OCaml manual.

There are, typically, two different activities when writing programs larger than a few dozen lines: firstly,
dealing with the challenges of complexity inherent in the problem, by finding appropriate abstraction
mechanisms and, secondly, finding and using the wide range of third-party libraries available for a given
language. Most projects involve a combination of the two. In this text we concentrate wholly on the former,
using nothing other than the OCaml Standard Library. Keeping up with the myriad third-party OCaml
libraries is a task better suited to other media.

The book consists of sixteen short chapters falling broadly into three categories. Some introduce pieces
of OCaml syntax with worked examples. Some survey practical topics such as input/output. Some cover
little diversions or puzzles. The main matter of the book ends with a lengthy worked example: a program
to build PDF files containing computer-generated drawings and text. There are full answers and hints for
all questions in the book, and additional material in the online resources.
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