

More OCaml
Algorithms, Methods & Diversions

John Whitington

C
o

h
eren

t
W

h
itin

g
to

n
M

o
re O

C
am

l

In More OCaml John Whitington takes a meandering tour of functional programming
with OCaml, introducing various language features and describing some classic
algorithms. The book ends with a large worked example dealing with the production of
PDF files. There are questions for each chapter together with worked answers and hints.
 More OCaml will appeal both to existing OCaml programmers who wish to brush
up their skills, and to experienced programmers eager to explore functional languages
such as OCaml. It is hoped that each reader will find something new, or see an old thing
in a new light. For the more casual reader, or those who are used to a different functional
language, a summary of basic OCaml is provided at the front of the book.

Jo hn Whitington founded a software company which uses OCaml extensively. He
teaches functional programming to students of Computer Science at the University of
Cambridge. His other books include “PDF Explained” (O'Reilly, 2012) and “OCaml from
the Very Beginning” (Coherent, 2013).

MORE OCAML Algorithms, Methods & Diversions

In More OCaml John Whitington takes a meandering tour of functional program-
ming with OCaml, introducing various language features and describing some
classic algorithms. The book ends with a large worked example dealing with the
production of PDF files. There are questions for each chapter together with worked
answers and hints.

More OCaml will appeal both to existing OCaml programmers who wish to
brush up their skills, and to experienced programmers eager to explore functional
languages such as OCaml. It is hoped that each reader will find something new, or
see an old thing in a new light. For the more casual reader, or those who are used to
a different functional language, a summary of basic OCaml is provided at the front
of the book.

JOHN WHITINGTON founded a software company which uses OCaml extensively.
He teaches functional programming to students of Computer Science at the
University of Cambridge. His other books include “PDF Explained” (O’Reilly, 2012)
and “OCaml from the Very Beginning” (Coherent, 2013).

MORE OCAML

Algorithms, Methods & Diversions

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2014

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published August 2014
Reprinted with corrections July 2015

Reprinted 2016
Updated for OCaml language changes October 2017

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-1-9 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

OCaml from the Very Beginning (Coherent, 2013)

A Machine Made this Book: Ten Sketches of Computer Science (Coherent, 2016)

Contents

Summary of Basic OCaml ix

Our Working Environment xiii

1 Unravelling “Fold” 1

2 Being Lazy 9

3 Named Tuples with Records 15

4 Generalized Input/Output 21

5 Streams of Bits 27

6 Compressing Data 35

7 Labelled and Optional Arguments 51

8 Formatted Printing 57

9 Searching for Things 63

10 Finding Permutations 71

11 Making Sets 79

12 Playing Games 93

GENERATING PDF DOCUMENTS - AN EXTENDED EXAMPLE 98

13 Representing Documents 101

14 Writing Documents 107

15 Pretty Pictures 117

16 Adding Text 123

Answers to Questions 131

Hints for Questions 189

Coping with Errors 195

Index 201

v

Preface

When I wrote “OCaml from the Very Beginning”, the intention was to have a book with no prerequisites –
a bright individual, new to programming, could follow it. Because of this, and for length concerns, plenty
of interesting material had to be omitted. This text, not being constrained in the same way, contains a
variety of topics which require some existing experience with a functional language. Those who have
read the previous text should have no problem with this one. Equally, it should be comprehensible to a
functional programmer familiar with another language such as Standard ML or Haskell. The reader may
need to make occasional reference to the OCaml manual.

There are, typically, two different activities when writing programs larger than a few dozen lines: firstly,
dealing with the challenges of complexity inherent in the problem, by finding appropriate abstraction
mechanisms and, secondly, finding and using the wide range of third-party libraries available for a given
language. Most projects involve a combination of the two. In this text we concentrate wholly on the former,
using nothing other than the OCaml Standard Library. Keeping up with the myriad third-party OCaml
libraries is a task better suited to other media.

The book consists of sixteen short chapters falling broadly into three categories. Some introduce pieces
of OCaml syntax with worked examples. Some survey practical topics such as input/output. Some cover
little diversions or puzzles. The main matter of the book ends with a lengthy worked example: a program
to build PDF files containing computer-generated drawings and text. There are full answers and hints for
all questions in the book, and additional material in the online resources.

Acknowledgments

The quotation in Chapter 6 is taken from ISO-32000 © International Organization for Standardization.
The tables of codes in the same chapter are taken from ITU-T T.30 © International Telecommunication
Union. The presentation of the balancing operation for Red-Black trees in Chapter 11 and its functional
implementation is due to Chris Okasaki, as described in the invaluable “Purely Functional Data Structures”
(Cambridge University Press, ISBN 978-0521663502, 1998). Chapter 12 was inspired by a University of
Cambridge Computer Science Tripos exam question set by Lawrence C. Paulson in 1999. Question 3 of that
chapter is due to Peter D. Schumer in “Mathematical Journeys” (John Wiley & Sons, ISBN 0-471-22066-3,
2004).

I am grateful to the many colleagues and friends with whom I have been able to discuss OCaml style
and substance, including Mark Shinwell, Leo White, Daniel Bünzli, Anil Madhavapeddy, Stephen Dolan
and many others whom I have forgotten. Helpful comments on an earlier draft were provided by Stefan
Schmiedl, Manuel Cornes, Jonas Bülow, Emmanuel Delaborde, Mario Alvarez Picallo, Giannis Tsaraias,
Emmanuel Oga, and André Bjärby.

vii

