

More OCaml
Algorithms, Methods & Diversions

John Whitington

C
o

h
eren

t
W

h
itin

g
to

n
M

o
re O

C
am

l

In More OCaml John Whitington takes a meandering tour of functional programming
with OCaml, introducing various language features and describing some classic
algorithms. The book ends with a large worked example dealing with the production of
PDF files. There are questions for each chapter together with worked answers and hints.
 More OCaml will appeal both to existing OCaml programmers who wish to brush
up their skills, and to experienced programmers eager to explore functional languages
such as OCaml. It is hoped that each reader will find something new, or see an old thing
in a new light. For the more casual reader, or those who are used to a different functional
language, a summary of basic OCaml is provided at the front of the book.

Jo hn Whitington founded a software company which uses OCaml extensively. He
teaches functional programming to students of Computer Science at the University of
Cambridge. His other books include “PDF Explained” (O'Reilly, 2012) and “OCaml from
the Very Beginning” (Coherent, 2013).

MORE OCAML

Algorithms, Methods & Diversions

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2014

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published August 2014
Reprinted with corrections July 2015

Reprinted 2016
Updated for OCaml language changes October 2017

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-1-9 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

OCaml from the Very Beginning (Coherent, 2013)

A Machine Made this Book: Ten Sketches of Computer Science (Coherent, 2016)

Chapter 1

Unravelling “Fold”

The List module in OCaml’s Standard Library defines two intriguingly-named functions over lists:

fold_left : (α → β → α) → α → β list → α
fold_right : (α → β → β) → α list → β → β

let rec fold_left f a l =
match l with

[] -> a
| h::t -> fold_left f (f a h) t

let rec fold_right f l a =
match l with

[] -> a
| h::t -> f h (fold_right f t a)

What do they do? And why are they considered important enough to include in the Standard Library?
As we shall see, they abstract the idea of recursion over lists with an accumulator in a most delightfully
generic way.

Let us first examine fold_left and its rather complicated type. The first argument is itself a function,
which takes the existing accumulator and an element from the input list, combines them in some fashion,
and returns a new accumulator, ready for the next element. So, in general, the first argument has type α
→ β → α. Then we have an initial value for the accumulator, which must have type α, and an input list
of type β list. The return value is the final accumulator, so that must have type α. We can annotate the
function as follows:

fold_left : (α → β → α) → α → β list → α

let rec fold_left f a l = function, initial accumulator, input list
match l with

[] -> a no more input – return the accumulator
| h::t -> fold_left f (f a h) t apply function to a and h, making new a

1

2 Chapter 1. Unravelling “Fold”

We can find the sum of a list of numbers:

fold_left (+) 0 [1; 2; 3]

=⇒ fold_left (+) 1 [2; 3]

=⇒ fold_left (+) 3 [3]

=⇒ fold_left (+) 6 []

=⇒ 6

Here, α and β are both int. The function (+) has the right type, and we use for the initial accumulator
the identity element for (+) which is 0 since for all x, x+ 0 = x (we cannot take the initial accumulator
from the list itself since our function must have a result for the sum of all the integers in an empty list.)

It might appear to the reader that this is more complicated than the simple recursive solution, but to
the experienced functional programmer, using fold_left is in fact easier to read. Let us find the maximum
number in a list using fold_left:

fold_left max min_int [2; 4; 6; 0; 1]

=⇒ fold_left max 2 [4; 6; 0; 1]

=⇒ fold_left max 4 [6; 0; 1]

=⇒ fold_left max 6 [0; 1]

=⇒ fold_left max 6 [1]

=⇒ fold_left max 6 []

=⇒ 6

Here max is the built-in function for finding the larger of two things, and min_int is the built-in value of
the smallest possible integer. We can use a similar scheme to define functions on lists of booleans:

all : bool list → bool
any : bool list → bool

let all l = fold_left (&&) true l

let any l = fold_left (||) false l

The all function is true if and only if all items in the list are true; the any function if at least one is. What
can happen when α and β are different? How about making the accumulator a list too? We can use
List.mem to turn an arbitrary list into a set by consulting the existing accumulator before putting an
element in:

setify : α list → α list

let setify l =
fold_left (fun a e -> if List.mem e a then a else e :: a) [] l

We are using List.mem to decide whether to add each element to the accumulator or discard it.

Chapter 1. Unravelling “Fold” 3

What about fold_right?

Here is the function again:

fold_right : (α → β → β) → α list → β → β

let rec fold_right f l a =
match l with

[] -> a
| h::t -> f h (fold_right f t a)

The fold_left function applied the given function over the elements in the input list from the left hand
side. In contrast, fold_right processes them from the right, by changing the evaluation order. Consider,
for example, our summation example:

fold_left (+) 0 [1; 2; 3]

=⇒ fold_left (+) 1 [2; 3]

=⇒ fold_left (+) 3 [3]

=⇒ fold_left (+) 6 []

=⇒ 6

fold_right (+) [1; 2; 3] 0

=⇒ (+) 1 (fold_right (+) [2; 3] 0)

=⇒ (+) 1 ((+) 2 (fold_right (+) [3] 0))

=⇒ (+) 1 ((+) 2 ((+) 3 (fold_right (+) [] 0)))

=⇒ (+) 1 ((+) 2 ((+) 3 0))

=⇒ (+) 1 ((+) 2 3)

=⇒ (+) 1 5

=⇒ 6

See how the accumulating of values starts from the right hand side. Note also that fold_right is not
tail-recursive (the intermediate expression it builds is proportional to the size of the input). We can define
map simply as a use of fold_right.

map : (α → β) → α list → β list

let map f l =
fold_right (fun e a -> f e :: a) l []

Who would have thought that fold_right was the more fundamental function? At the cost of a list
reversal, we can make fold_right tail-recursive by defining it in terms of fold_left:

4 Chapter 1. Unravelling “Fold”

fold_right : (α → β → β) → α list → β → β

let fold_right f l e =
fold_left (fun x y -> f y x) e (List.rev l)

Sometimes we want to provide an initial accumulator value which is not the identity element for the
computation. For example, applying :: over an input list with fold_right is not very interesting, yielding
a function which returns a copy of its input:

copy : α list → α list

let copy l =
fold_right (fun e a -> e :: a) l []

But if we supply a non-empty list as the initial value of the accumulator, we have the append function:

append : α list → α list → α list

let append x y =
fold_right (fun e a -> e :: a) x y

We can use a more complicated accumulator, such as a tuple. In this example, we replicate the List.split
function which, given a list of pairs, yields a pair of lists:

split : (α × β) list → α list × β list

let split l =
fold_right

(fun (x, y) (xs, ys) -> (x :: xs, y :: ys))
l
([], [])

For example, split [(1, "one"); (2, "two")] evaluates to ([1; 2], ["one"; "two"]).

A word of caution

One very simple definition for the function concat which concatenates all lists in a list of lists is given by:

concat : α list list → α list

let concat l = fold_left (@) [] l

Chapter 1. Unravelling “Fold” 5

We use the append function to accumulate the lists into a single list one by one:

fold_left (@) [] [[1;2]; [3]; [4;5]]

=⇒ fold_left (@) [1; 2] [[3]; [4; 5]]

=⇒ fold_left (@) [1; 2; 3] [[4; 5]]

=⇒ fold_left (@) [1; 2; 3; 4; 5] []

=⇒ [1; 2; 3; 4; 5]

However, the order of evaluation is such that the append function @ (which takes time proportional to the
length of its first argument) is used inefficiently – we process the list again and again.

Folding over trees

For the usual definition of a binary tree, we can define a fold. There are two accumulators, one for
everything from the left sub-tree, and one for everything from the right sub-tree. The supplied function
combines both into a new accumulator.

fold_tree : (α → β → β → β) → β → α tree → β

type 'a tree =
Lf

| Br of 'a * 'a tree * 'a tree

let rec fold_tree f e t =
match t with

Lf -> e
| Br (x, l, r) -> f x (fold_tree f e l) (fold_tree f e r)

Here is an example tree:

1

6

4

0

which we write as Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf))

Functions for the size of a tree, and the sum of an integer tree are now easy, without explicit recursion:

6 Chapter 1. Unravelling “Fold”

tree_size : α tree → int
tree_sum : int tree → int

let tree_size t = fold_tree (fun _ l r -> 1 + l + r) 0 t

let tree_sum t = fold_tree (fun x l r -> x + l + r) 0 t

The standard tree traversals can be written easily with a list accumulator. A little typographical manipula-
tion shows the pleasing symmetry:

tree_preorder : α tree → α list
tree_inorder : α tree → α list
tree_postorder : α tree → α list

let tree_preorder t = fold_tree (fun x l r -> [x] @ l @ r) [] t
let tree_inorder t = fold_tree (fun x l r -> l @ [x] @ r) [] t
let tree_postorder t = fold_tree (fun x l r -> l @ r @ [x]) [] t

On our example list:

tree_preorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [1; 0; 6; 4]

tree_inorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [0; 1; 4; 6]

tree_postorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [0; 4; 6; 1]

Chapter 1. Unravelling “Fold” 7

Questions

1. Write a function which, given a list of integers representing expenses, removes them from a budget,
again represented by an integer.

2. Calculate the length of a list using one of the fold_ functions.

3. Use one of the fold_ functions to find the last element of list, if any. Behave sensibly if the list is
empty.

4. Write a function to reverse a list, using one of the fold_ functions.

5. Write a version of List.mem using one of the fold_ functions. Now setify can be defined entirely
using folds.

6. Use a fold to write a function which, given a list of non-empty strings representing words, returns a
single string where the words are separated by spaces. Comment on its efficiency.

7. Use fold_tree to write a function which calculates the maximum depth of a tree. What is its type?

8. Compare the time efficiency of one or more of your functions with the system implementation of
the same function (for example, our fold-based member function vs. List.mem) with regard to both
computational complexity and actual time taken.

9. Comment on whether the use of folds in each of Questions 1–7 is good style.

	Unravelling "Fold"

