

More OCaml
Algorithms, Methods & Diversions

John Whitington

C
o

h
eren

t
W

h
itin

g
to

n
M

o
re O

C
am

l

In More OCaml John Whitington takes a meandering tour of functional programming
with OCaml, introducing various language features and describing some classic
algorithms. The book ends with a large worked example dealing with the production of
PDF files. There are questions for each chapter together with worked answers and hints.
 More OCaml will appeal both to existing OCaml programmers who wish to brush
up their skills, and to experienced programmers eager to explore functional languages
such as OCaml. It is hoped that each reader will find something new, or see an old thing
in a new light. For the more casual reader, or those who are used to a different functional
language, a summary of basic OCaml is provided at the front of the book.

Jo hn Whitington founded a software company which uses OCaml extensively. He
teaches functional programming to students of Computer Science at the University of
Cambridge. His other books include “PDF Explained” (O'Reilly, 2012) and “OCaml from
the Very Beginning” (Coherent, 2013).

MORE OCAML

Algorithms, Methods & Diversions

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2014

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published August 2014
Reprinted with corrections July 2015

Reprinted 2016
Updated for OCaml language changes October 2017

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-1-9 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

OCaml from the Very Beginning (Coherent, 2013)

A Machine Made this Book: Ten Sketches of Computer Science (Coherent, 2016)

Chapter 12

Playing Games

The childhood game of Noughts and Crosses is a combinatorial problem of a large but manageable size.
Let us review the rules, and then see if we can build the game tree (that is, a structure describing all possible
games), and draw some statistics from it.

A 3-by-3 grid is constructed. Two players (O and X) take turns, beginning with O, to place their piece
in an empty space. The game is won if or when a player forms three pieces in a row, column, or diagonally.
The game is drawn if the board is full and no such pattern has been formed. For example, in this board,
player O has won, building a diagonal:

X O
O X

O X O

Let us consider the shape of the game tree. Clearly, at the top level, it will branch nine ways, since O can
be placed in any square. Then eight ways, seven ways and so on. Once we reach the fifth level, some
of the games have been won (since three pieces from player O may form a line), and so the number of
branches may be reduced. The tree must end after nine levels, since the board must at least be full, even
if no-one has won. A fragment of the game tree is shown in Figure 12.1. Let us begin to construct the
program. We will need a type to represent X, O and the empty square:

type turn = O | X | E

It would be natural to use a nine-tuple, since the board is of a fixed size. Then, though, we lose the ability
to use the standard list-processing functions such as List.map over the boards. So, at the cost of a little
inelegance, we will use a list of length nine instead – in other words a turn list.

We need to terminate the tree when X has won, O has won, or the board is full. Thus we will need to
check all the rows, columns, and diagonals. We do not want to replicate the logic several times or build a
huge pattern match, so it is easiest to write a function which takes a list of nine booleans and just checks for
lines of true. We can then use List.map on the board itself to build these intermediate lists of booleans.

93

94 Chapter 12. Playing Games

• • •
• • •
• • •

• • •
• • •
• • O

• • •
• • •
• X O

• • •
• • •
X • O

• • •
• • X
• • O

• • •
• X •
• • O

• • •
X • •
• • O

• • X
• • •
• • O

• X •
• • •
• • O

X • •
• • •
• • O

• • •
• • •
• O •

• • •
• • •
O • •

• • •
• • O
• • •

• • •
• O •
• • •

• • •
O • •
• • •

• • O
• • •
• • •

• O •
• • •
• • •

O • •
• • •
• • •

Figure 12.1

won : bool list → bool

let won [a; b; c; d; e; f; g; h; i] =
a && b && c || d && e && f || g && h && i || a && d && g ||
b && e && h || c && f && i || a && e && i || c && e && g

We can number the positions in our board:

1 2 3
4 5 6
7 8 9

Now, we can use functions from the List module to write a function to return the numbers of the positions
which are currently empty:

empty : turn → int list

let empty b =
List.map snd

(List.filter (fun (t, _) -> t = E)
(List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))

This works by building the list of tuples [(X, 1); (E, 2); (E, 3) . . .(O, 9)], filtering out any which
are not empty, and extracting the list of empty positions [2, 3 . . .]. It is also simple to write a function
which, given a board like [E; E; E; E; X; E; O; E; E], a turn like O and a number such as 8, will fill in
the correct slot in the board to produce [E; E; E; E; X; E; O; X; E]. The take and drop functions from
our Util module (described on page xiii) are ideal:

Chapter 12. Playing Games 95

replace : turn → turn list → int → turn list

let replace turn board p =
Util.take board (p - 1) @ [turn] @ Util.drop board p

One more simple function is required before we can write the main tree-building function, and that is to
change whose turn it is:

flip_turn : turn → turn

let flip_turn t =
match t with O -> X | X -> O

What should the type of the game tree be? Each node needs a list of turn elements representing the board,
and a list of zero or more trees representing the game resulting from each possible move. Since the list can
have zero elements, we need no separate leaf constructor:

type tree = Move of turn list * tree list

Now we may construct the main function. Our job is to build, given a turn (X or O) and the current board,
the tree starting at that board. If the board has been won by either player, the list of next nodes is empty,
and the recursion stops. If not, we calculate the empty positions, build a new board with each empty
position filled in with the current turn, and then map next_moves over each of those.

next_moves : turn → turn list → tree

let rec next_moves turn board =
let next =

if
won (List.map ((=) O) board) ||
won (List.map ((=) X) board)

then
[]

else
List.map
(next_moves (flip_turn turn))
(List.map (replace turn board) (empty board))

in
Move (board, next)

Note that the recursion stops when a board is full (drawn) because empty returns the empty list in this
case. Now we can build the game tree itself, which might take a second or so:

game_tree : tree

let game_tree =
next_moves O [E; E; E; E; E; E; E; E; E]

96 Chapter 12. Playing Games

This results in the tree shown below.

val game_tree : tree =
Move ([E; E; E; E; E; E; E; E; E],
[Move ([O; E; E; E; E; E; E; E; E],
[Move ([O; X; E; E; E; E; E; E; E],

[Move ([O; X; O; E; E; E; E; E; E],
[Move ([O; X; O; X; E; E; E; E; E],

[Move ([O; X; O; X; O; E; E; E; E],
[Move ([O; X; O; X; O; X; E; E; E],

[Move ([O; X; O; X; O; X; O; E; E], []);
Move ([O; X; O; X; O; X; E; O; E],
[Move ([O; X; O; X; O; X; X; O;

[Move ([O; X; O; X; O; X; X; O; O], [])]);
Move ([O; X; O; X; O; X; E; O; X],
[Move ([O; X; O; X; O; X; O; O; X], [])])]);

Move ([O; X; O; X; O; X; E; E; O], [])]);
Move ([O; X; O; X; O; E; X; E; E],
[Move ([O; X; O; X; O; O; X; E; E],

[Move ([O; X; O; X; O; O; X; X; E],
[Move ([O; X; O; X; O; O; X; X; O], [])]);

Move ([O; X; O; X; O; O; X; E; X],
[Move ([O; X; O; X; O; O; X; O; X], [])])]);

Move ([O; X; O; X; O; E; X; O; E],
[Move ([O; X; O; X; O; X; X; O; E],

[Move ([O; X; O; X; O; X; X; O; O], [])]);
Move ([O; X; O; X; O; E; X; O; X],

[Move ([O; X; O; X; O; O; X; O; X], [])])]);
...]);

...]);
...]);

...]);
...]);

...]);
...])

You can see the first ending position in this game tree is [O; X; O; X; O; X; O; E; E]. You can also
see several drawn games. We can now use this game tree to calculate how many games are won by a
given player:

num_wins : term → tree → int

let rec num_wins turn (Move (b, bs)) =
(if won (List.map ((=) turn) b) then 1 else 0) +
List.fold_left (+) 0 (List.map (num_wins turn) bs)

This tells us, reasonably quickly, that O wins 131184 games. The questions at the end of this chapter ask
you to work out more of these numbers. Here is the full code in one place:

Chapter 12. Playing Games 97

type turn = O | X | E

let won [a; b; c; d; e; f; g; h; i] =
a && b && c || d && e && f || g && h && i || a && d && g ||
b && e && h || c && f && i || a && e && i || c && e && g

let replace turn board p =
Util.take board (p - 1) @ [turn] @ Util.drop board p

let flip_turn t =
match t with O -> X | X -> O

let empty b =
List.map snd

(List.filter (fun (t, _) -> t = E)
(List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))

type tree = Move of turn list * tree list

let rec next_moves turn board =
let next =

if
won (List.map ((=) O) board) ||
won (List.map ((=) X) board)

then
[]

else
List.map
(next_moves (flip_turn turn))
(List.map (replace turn board) (empty board))

in
Move (board, next)

let game_tree =
next_moves O [E; E; E; E; E; E; E; E; E]

In the questions, you will extract the rest of the statistics from the tree, and build some alternative
representations.

98 Chapter 12. Playing Games

Questions

1. In how many cases does X win? How many possible different games are there? How many end in a
draw?

2. Build a lazy version of our game tree, where nodes are only created when explored. Now write a
function to work out how many times O and X win or the game is drawn if O goes first and picks
the centre slot. What about if O picks a corner? The middle of a side?

3. Another way to check if someone has won is to rearrange the board numbers into a so-called magic
square, where each row, column or diagonal sums to 15:

8 1 6
3 5 7
4 9 2

Now, a player has won if they have any three positions summing to 15. Re-implement our game
tree program using this alternative representation.

	Playing Games
	Generating PDF Documents - An Extended Example

