


GROWING
RAILS APPLICATIONS
IN PRACTICE
Structure large Ruby on Rails apps using the tools 
you already know and love.

By Henning Koch and Thomas Eisenbarth

©2013 ­ 2016 makandra GmbH 



5. Dealing with fat models
In our chapter “Beautiful controllers” we moved code from the controller into our models. We have
seen numerous advantages by doing so: Controllers have become simpler, testing logic has become
easier. But after some time, your models have started to exhibit problems of their own:

• You are afraid to save a record because it might trigger undesired callbacks (like sending an
e-mail).

• Too many validations and callbacks make it harder to create sample data for a unit test.
• Different UI screens require different support code from your model. For instance a welcome
e-mail should be sent when a User is created from public registration form, but not when an
administrator creates a User in her backend interface.

All of these problems of so-called “fat models” can be mitigated. But before we look at solutions,
let’s understand why models grow fat in the first place.

Why models grow fat

The main reason why models increase in size is that they must serve more and more purposes over
time. For example a User model in a mature application needs to support a lot of use cases:

• A new user signs up through the registration form
• An existing user signs in with her email and password
• A user wants to reset her lost password
• A user logs in via Facebook (OAuth)
• A users edits her profile
• An admin edits a user from the backend interface
• Other models need to work with User records
• Background tasks need to batch-process users every night
• A developer retrieves and changes User records on the Rails console

Each of these many use cases leaves scar tissue in your model which affects all use cases. You end
up with a model that is very hard to use without undesired side effects getting in your way.

Lets look at a typical Usermodel one year after you started working on your application, and which
use cases have left scars in the model code:

30



Dealing with fat models 31

Use case Scar tissue in User model

New user registration form Validation for password strength policy
Accessor and validation for password repetition
Accessor and validation for acceptance of terms
Accessor and callback to create newsletter subscription
Callback to send activation e-mail
Callback to set default attributes
Protection for sensitive attributes (e.g. admin flag)
Code to encrypt user passwords

Login form Method to look up a user by either e-mail or screen name
Method to compare given password with encrypted password

Password recovery Code to generate a recovery token
Code to validate a given recovery token
Callback to send recovery link

Facebook login Code to authenticate a user from OAuth
Code to create a user from OAuth
Disable password requirement when authenticated via OAuth

Users edits her profile Validation for password strength policy
Accessor and callback to enable password change
Callback to resend e-mail activation
Validations for social media handles
Protection for sensitive attributes (e.g. admin flag)

Admin edits a user Methods and callbacks for authorization (access control)
Attribute to disable a user account
Attribute to set an admin flag

Other models that works with users Default attribute values
Validations to enforce data integrity
Associations
Callbacks to clean up associations when destroyed
Scopes to retrieve commonly used lists of users

Background tasks processes users Scopes to retrieve records in need of processing
Methods to perform required task

That’s a lot of code to dig through! And even if readability wasn’t an issue, a model like this is a
pain to use:

• You are suddenly afraid to update a record because who knows what callbacks might trigger.
For instance a background job that synchronizes data accidentally sends a thousand e-mails
because some after_save callback informs the user that her profile was updated (“it made
sense for the user profile” ).

• Other code that wants to create a User finds itself unable to save the record because some



Dealing with fat models 32

access control callback forbids it (“it made sense for the admin area” ).
• Different kind of User forms require different kind of validations, and validations from that
other form are always in the way. You begin riddling the model with configuration flags to
enable or disable this or that behavior.

• Unit tests become impossible because every interaction with User has countless side effects
that need to be muted through verbose stubbing.

The case of the missing classes

Fat models are often the symptoms of undiscovered classes trying to get out. When we take a close
look at the huge table above we can discover new concepts that never made it into their own classes:

• PasswordRecovery

• AdminUserForm

• RegistrationForm

• ProfileForm

• FacebookConnect

Remember when we told you that large applications are large? When you need to implement
password recovery, and do not have a clear, single place to put the logic, it will still find its way
into your code. It will spread itself across existing classes, usually making those classes harder to
read and use.

Compare this to your apartment at home and what you do with letters you need to deal with later.
Maybe there’s a stack of these letters sitting next to your keys or on your desk or dining table,
probably all of the above. Because there’s no designated place for incoming letters, they are spread
all over the apartment. It’s hard to find the letter you’re looking for. They clutter up your desk. And
they’re in the way for dinner, too!

Of course there’s a simple solution to our letter problem.We can make a box, label it “Inbox” and put
it on a shelf above our desk. With all of our letters sitting in a designated place they are no longer
in the way for dinner or for working on our desk.

Code never goes away. You need to actively channel it into a place of your choice or it
will infest an existing class.

Note that our apartment still contains the same number of letters as it did before. Neither can we
make those letters go away. But instead of accepting an increase in clutter we have provided the
organizational structure that can carry more items. Remember our chart from the first chapter?



Dealing with fat models 33

Vanilla Rails vs. Structured Rails

Getting into a habit of organizing

Organizing your letters in an inbox is not hard. But realizing that all those letters lying around are
actually yelling “Make an inbox!” takes some practice.

In similar fashion, when you are looking for a place to add new code, don’t immediately look for an
existing ActiveRecord class. Instead look for new classes to contain that new logic.

In the following chapters we will show you:

• How to get into a habit of identifying undiscovered concepts in your code
• How to keep a slim core model by channelling interaction-specific support code into their
own classes

• How to identify code that does not need to live inside an ActiveRecord model and extract it
into service classes

• How to do all of this with the convenience that you are used to from ActiveRecord


