The New and Improved

Flask Mega-Tutorial

(2024 Edition)

bl /7 —— = :“:_ g

P “:;..N\":,.; - ' — RN
—) . v!‘ IV 3 'J‘irr":’;

*\(f“—@;y@‘w".(» -

Miguel Grinberg




The New and Improved Flask
Mega-Tutorial (2024 Edition)

Miguel Grinberg

Jan 09, 2025



1. Hello, World!

Welcome! You are about to start on a journey to learn how to create web applications with Python'
and the Flask® framework. In this first chapter, you are going to learn how to set up a Flask project.
By the end of the chapter you are going to have a simple Flask web application running on your
computer!

All the code examples presented in this book are hosted on a GitHub repository. Downloading the
code from GitHub can save you a lot of typing, but I strongly recommend that you type the code
yourself, at least for the first few chapters. Once you become more familiar with Flask and the
example application you can access the code directly from GitHub if the typing becomes too tedious.

At the beginning of each chapter, I'm going to give you three GitHub links that can be useful while
you work through the chapter. The Browse link will open the GitHub repository for Microblog at the
place where the changes for the chapter you are reading were added, without including any changes
introduced in future chapters. The Zip link is a download link for a zip file including the entire
application up to and including the changes in the chapter. The Diff link will open a graphical view
of all the changes that were made in the chapter you are about to read.

The GitHub links for this chapter are: Browse>, Zip*, Diff.

1.1. Installing Python

If you don't have Python installed on your computer, go ahead and install it now. If your operating
system does not provide you with a Python package, you can download an installer from the Python
official website®. If you are using Microsoft Windows along with WSL or Cygwin, note that you will
not be using the Windows native version of Python, but a UNIX-friendly version that you need to
obtain from Ubuntu (if you are using WSL) or from Cygwin.

! https://python.org

2 http://flask.pocoo.org

3 https://github.com/miguelgrinberg/microblog/tree/v0.1

4 https://github.com/miguelgrinberg/microblog/archive/v0.1.zip

5 https://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1
6 http://python.org/download/



https://python.org
http://flask.pocoo.org
https://github.com/miguelgrinberg/microblog/tree/v0.1
https://github.com/miguelgrinberg/microblog/archive/v0.1.zip
https://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1
http://python.org/download/
http://python.org/download/

The New and Improved Flask Mega-Tutorial (2024 Edition)

To make sure your Python installation is functional, you can open a terminal window and type
python3, or if that does not work, just python. Here is what you should expect to see:

$ python3
Python 3.12.0 (main, Oct 5 2023, 10:46:39) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>>

The Python interpreter is now waiting at an interactive prompt, where you can enter Python state-
ments. In future chapters you will learn what kinds of things this interactive prompt is useful for. But
for now, you have confirmed that Python is installed on your system. To exit the interactive prompt,
you can type exit () and press Enter. On the Linux and macOS versions of Python you can also exit
the interpreter by pressing Ctrl-D. On Windows, the exit shortcut is Ctrl-Z followed by Enter.

1.2. Installing Flask

The next step is to install Flask, but before I go into that I want to tell you about the best practices
associated with installing Python packages.

In Python, packages such as Flask are available in a public repository, from where anybody can
download them and install them. The official Python package repository is called PyPI’, which
stands for Python Package Index (some people also refer to this repository as the "cheese shop").
Installing a package from PyPI is very simple, because Python comes with a tool called pip that
does this work.

To install a package on your machine, you use pip as follows:

[$ pip install <package-name>

Interestingly, this method of installing packages will not work in most cases. If your Python inter-
preter was installed globally for all the users of your computer, chances are your regular user account
is not going to have permission to make modifications to it, so the only way to make the command
above work is to run it from an administrator account. But even without that complication, consider
what happens when you install a package in this way. The pip tool is going to download the package
from PyPI, and then add it to your Python installation. From that point on, every Python script that
you have on your system will have access to this package. Imagine a situation where you have com-
pleted a web application using version 2 of Flask, which was the most current version of Flask when
you started, but now it has been superseded by version 3. You now want to start a second application,
for which you'd like to use version 3, but if you upgrade the version 1 that you have installed you risk
breaking your older application. Do you see the problem? It would be ideal if it was possible to have
Flask version 2 installed and accessible to your old application, while also install Flask version 3 for
your new one.

7 https://pypi.python.org/pypi

8 Hello, World!


https://pypi.python.org/pypi

The New and Improved Flask Mega-Tutorial (2024 Edition)

To address the issue of maintaining different versions of packages for different applications, Python
uses the concept of virtual environments. A virtual environment is a complete copy of the Python
interpreter. When you install packages in a virtual environment, the system-wide Python interpreter
is not affected, only the copy is. So the solution to have complete freedom to install any versions
of your packages for each application is to use a different virtual environment for each application.
Virtual environments have the added benefit that they are owned by the user who creates them, so
they do not require an administrator account.

Let's start by creating a directory where the project will live. I'm going to call this directory mi-
croblog, since that is the name of the application:

$ mkdir microblog
$ cd microblog

Support for virtual environments is included in all recent versions of Python, so all you need to do
to create one is this:

[$ python3 -m venv venv J

With this command, I'm asking Python to run the venv package, which creates a virtual environment
named venv. The first venv in the command is an argument to the -m option which is the name of
the Python virtual environment package, and the second is the virtual environment name that I'm
going to use for this particular environment. If you find this confusing, you can replace the second
venv with a different name that you want to assign to your virtual environment. In general, I create
my virtual environments with the name venv in the project directory, so whenever I cd into a project
I find its corresponding virtual environment.

Note that in some operating systems you may need to use python instead of python3 in the command
above. Some installations use python for Python 2.x releases and python3 for the 3.x releases, while
others map python to the 3.x releases and do not have a python3 command at all.

After the command completes, you are going to have a directory named venv where the virtual envi-
ronment files are stored.

Now you have to tell the system that you want to use this virtual environment, and you do that by
activating it. To activate your brand new virtual environment you use the following command:

$ source venv/bin/activate
(venv) § _

If you are using a Microsoft Windows command prompt window, the activation command is slightly
different:

(venv) §$ _

$ venv\Scripts\activate

If you are on Windows but are using PowerShell instead of the command prompt, then there is yet
another activation command you should use:

Installing Flask 9



The New and Improved Flask Mega-Tutorial (2024 Edition)

$ venv\Scripts\Activate.psl
(venv) § _

When you activate a virtual environment, the configuration of your terminal session is modified so
that the Python interpreter stored inside it is the one that is invoked when you type python. Also, the
terminal prompt is modified to include the name of the activated virtual environment. The changes
made to your terminal session are all temporary and private to that session, so they will not persist
when you close the terminal window. If you work with multiple terminal windows open at the same
time, it is perfectly fine to have different virtual environments activated on each one.

Now that you have a virtual environment created and activated, you can finally install Flask in it:

[(venv) $ pip install flask ]

If you want to confirm that your virtual environment now has Flask installed, you can start the Python
interpreter and import Flask into it:

>>> import flask
>>>

If this statement does not give you any errors you can congratulate yourself, as Flask is installed and
ready to be used.

Note that the above installation commands do not specify which version of Flask you want to install.
The default when no version is specified is to install the latest version available in the package repos-
itory. This tutorial is designed for version 3 of Flask, but should also work with version 2. The above
command will install the latest 3.x version, which should be appropriate for most users. If for any
reason you prefer to follow this tutorial on a 2.x release of Flask, you can use the following command
to install the latest 1.x version:

[(venv) $ pip install "flask<3" "werkzeug<3" ]

1.3. A ""Hello, World" Flask Application

If you go to the Flask's quick start page®, you are welcomed with a very simple example application
that has just five lines of code. Instead of repeating that trivial example, I'm going to show you a
slightly more elaborate one that will give you a good base structure for writing larger applications.

The application will exist in a package. In Python, a subdirectory that includes a __init__.py file is
considered a package, and can be imported. When you import a package, the __init__.py executes
and defines what symbols the package exposes to the outside world.

Let's create a package called app, that will host the application. Make sure you are in the microblog
directory and then run the following command:

8 https://flask.palletsprojects.com/en/3.0.x/quickstart/

10 Hello, World!


https://flask.palletsprojects.com/en/3.0.x/quickstart/

The New and Improved Flask Mega-Tutorial (2024 Edition)

[(venv) $ mkdir app

The __init__.py for the app package is going to contain the following code:

Listing 1.1: app/__init__.py: Flask application instance

from flask import Flask
app = Flask(__name__)

from app import routes

The script above creates the application object as an instance of class Flask imported from the flask
package. The __name__ variable passed to the Flask class is a Python predefined variable, which
is set to the name of the module in which it is used. Flask uses the location of the module passed
here as a starting point when it needs to load associated resources such as template files, which I will
cover in Chapter 2. For all practical purposes, passing __name__ is almost always going to configure
Flask in the correct way. The application then imports the routes module, which doesn't exist yet.

One aspect that may seem confusing at first is that there are two entities named app. The app package
is defined by the app directory and the __init__.py script, and is referenced in the from app import
routes statement. The app variable is defined as an instance of class Flask in the __init__.py script,
which makes it a member of the app package.

Another peculiarity is that the routes module is imported at the bottom and not at the top of the
script as it is always done. The bottom import is a well known workaround that avoids circular
imports, a common problem with Flask applications. You are going to see that the routes module
needs to import the app variable defined in this script, so putting one of the reciprocal imports at the
bottom avoids the error that results from the mutual references between these two files.

So what goes in the routes module? The routes handle the different URLs that the application
supports. In Flask, handlers for the application routes are written as Python functions, called view
functions. View functions are mapped to one or more route URLs so that Flask knows what logic to
execute when a client requests a given URL.

Here is the first view function for this application, which you need to write in a new module named
app/routes.py:

Listing 1.2: app/routes.py: Home page route

from app import app

@app.route('/")
@app.route('/index")
def index():

return "Hello, World!"

This view function is actually pretty short, it just returns a greeting as a string. The two strange
@app.route lines above the function are decorators, a unique feature of the Python language. A
decorator modifies the function that follows it. A common pattern with decorators is to use them to

A "Hello, World" Flask Application 11



The New and Improved Flask Mega-Tutorial (2024 Edition)

register functions as callbacks for certain events. In this case, the @app.route decorator creates an
association between the URL given as an argument and the function. In this example there are two
decorators, which associate the URLs / and /index to this function. This means that when a web
browser requests either of these two URLSs, Flask is going to invoke this function and pass its return
value back to the browser as a response. If this does not make complete sense yet, it will shortly,
when you run this application.

To complete the application, you need to have a Python script at the top-level that defines the Flask
application instance. Let's call this script microblog.py, and define it as a single line that imports the
application instance:

Listing 1.3: microblog.py: Main application module

[from app import app ]

Remember the two app entities? Here you can see both together in the same sentence. The Flask
application instance is called app and is a member of the app package. The from app import app
statement imports the app variable that is a member of the app package. If you find this confusing,
you can rename either the package or the variable to something else.

Just to make sure that you are doing everything correctly, below you can see a diagram of the project
structure so far:

microblog/
venv/
app/
__init__.py
routes.py
microblog.py

Believe it or not, this first version of the application is now complete! Before running it, though,
Flask needs to be told how to import it, by setting the FLASK_APP environment variable:

[(venv) $ export FLASK_APP=microblog.py ]

If you are using the Microsoft Windows command prompt, use set instead of export in the com-
mand above.

Are you ready to be blown away? You can run your first web application by typing the command
flask run, as shown below:

(venv) §$ flask run

* Serving Flask app 'microblog.py' (lazy loading)

* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

What happened here? The flask run command will look for a Flask application instance in the
module referenced by the FLASK_APP environment variable, which in this case is microblog.py. The

12 Hello, World!



The New and Improved Flask Mega-Tutorial (2024 Edition)

command sets up a web server that is configured to forward requests to this application.

After the server initializes it will wait for client connections. The output from flask run indicates
that the server is running on IP address 127.0.0.1, which is always the address of your own com-
puter. This address is so common that is also has a simpler name that you may have seen before:
localhost. Network servers listen for connections on a specific port number. Applications deployed
on production web servers typically listen on port 443, or sometimes 80 if they do not implement
encryption, but access to these ports requires administration rights. Since this application is running
in a development environment, Flask uses port 5000. Now open up your web browser and enter the
following URL in the address field:

[http ://localhost: 5000/ ]

Alternatively you can use this other URL:

[http://localhost:S®®®/index J

Do you see the application route mappings in action? The first URL maps to /, while the second
maps to /index. Both routes are associated with the only view function in the application, so they
produce the same output, which is the string that the function returns. If you enter any other URL
you will get an error, since only these two URLSs are recognized by the application.

A "Hello, World" Flask Application 13



The New and Improved Flask Mega-Tutorial (2024 Edition)

M localhost:5000/index )

< C 1 @ localhost:5000/index QA 1Y

Hello, World!

When you are done playing with the server you can just press Ctrl-C to stop it.
Congratulations, you have completed the first big step to become a web developer!

Did you have trouble running the Flask application? In most computers port 5000 is available, but
there is a possibility that your computer is already running an application that uses this port, in which
case the flask run command will fail with an "address already in use" or similar error. If you use a
Macintosh computer, some versions of macOS run a service called "Airplay Receiver" on this port.
If you are unable to figure out how to remove the software that uses port 5000, you can try running
Flask on a different port. For example, here is how to start the server on port 5001:

[(venv) $ flask run --port 5001

Before I end this chapter, I will show you one more thing. Since environment variables aren't re-
membered across terminal sessions, you may find it tedious to always have to set the FLASK_APP
environment variable when you open a new terminal window to work on your Flask application. But
luckily, Flask allows you to register environment variables that you want to be automatically used
when you run the flask command. To use this option you have to install the python-dotenv package:

14 Hello, World!



	Preface
	Who This Book Is For
	Requirements
	About The Example Application
	How To Work With The Example Code
	Conventions Used In This Book
	Acknowledgements

	Hello, World!
	Installing Python
	Installing Flask
	A "Hello, World" Flask Application

	Templates
	What Are Templates?
	Conditional Statements
	Loops
	Template Inheritance

	Web Forms
	Introduction to Flask-WTF
	User Login Form
	Form Templates
	Form Views
	Receiving Form Data
	Improving Field Validation
	Generating Links

	Database
	Databases in Flask
	Database Migrations
	Flask-SQLAlchemy Configuration
	Database Models
	Creating The Migration Repository
	The First Database Migration
	Database Upgrade and Downgrade Workflow
	Database Relationships
	Playing with the Database
	Shell Context

	User Logins
	Password Hashing
	Introduction to Flask-Login
	Preparing The User Model for Flask-Login
	User Loader Function
	Logging Users In
	Logging Users Out
	Requiring Users To Login
	Showing The Logged-In User in Templates
	User Registration

	Profile Page and Avatars
	User Profile Page
	Avatars
	Using Jinja Sub-Templates
	More Interesting Profiles
	Recording The Last Visit Time For a User
	Profile Editor

	Error Handling
	Error Handling in Flask
	Debug Mode
	Custom Error Pages
	Sending Errors by Email
	Logging to a File
	Fixing the Duplicate Username Bug
	Enabling Debug Mode Permanently

	Followers
	Database Relationships Revisited
	One-to-Many
	Many-to-Many
	Many-to-One and One-to-One

	Representing Followers
	Database Model Representation
	Adding and Removing "follows"
	Obtaining the Posts from Followed Users
	Joins
	Filters
	Sorting

	Combining Own and Followed Posts
	Outer Joins
	Compound Filters
	Grouping

	Unit Testing the User Model
	Integrating Followers with the Application

	Pagination
	Submission of Blog Posts
	Displaying Blog Posts
	Making It Easier to Find Users to Follow
	Pagination of Blog Posts
	Page Navigation
	Pagination in the User Profile Page

	Email Support
	Introduction to Flask-Mail
	Flask-Mail Usage
	A Simple Email Framework
	Requesting a Password Reset
	Password Reset Tokens
	Sending a Password Reset Email
	Resetting a User Password
	Asynchronous Emails

	Facelift
	CSS Frameworks
	Introducing Bootstrap
	Using Bootstrap
	Rendering Bootstrap Forms
	Rendering of Blog Posts
	Rendering Pagination Links
	Before And After

	Dates and Times
	Timezone Hell
	Timezone Conversions
	Introducing Moment.js and Flask-Moment
	Using Moment.js

	I18n and L10n
	Introduction to Flask-Babel
	Marking Texts to Translate In Python Source Code
	Marking Texts to Translate In Templates
	Extracting Text to Translate
	Generating a Language Catalog
	Updating the Translations
	Translating Dates and Times
	Command-Line Enhancements

	Ajax
	Server-side vs. Client-side
	Live Translation Workflow
	Language Identification
	Displaying a "Translate" Link
	Using a Third-Party Translation Service
	Ajax From The Server
	Ajax From The Client

	A Better Application Structure
	Current Limitations
	Blueprints
	Error Handling Blueprint
	Authentication Blueprint
	Main Application Blueprint

	The Application Factory Pattern
	Unit Testing Improvements
	Environment Variables
	Requirements File

	Full-Text Search
	Introduction to Full-Text Search Engines
	Installing Elasticsearch
	Elasticsearch Tutorial
	Elasticsearch Configuration
	A Full-Text Search Abstraction
	Integrating Searches with SQLAlchemy
	Search Form
	Search View Function

	Deployment on Linux
	Traditional Hosting
	Creating an Ubuntu Server
	Using an SSH Client
	Password-less Logins
	Securing Your Server
	Installing Base Dependencies
	Installing the Application
	Setting Up MySQL
	Setting Up Gunicorn and Supervisor
	Setting Up Nginx
	Deploying Application Updates
	Raspberry Pi Hosting

	Deployment on Heroku
	Hosting on Heroku
	Creating a Heroku account
	Installing the Heroku CLI
	Setting Up Git
	Creating a Heroku Application
	The Ephemeral File System
	Working with a Heroku Postgres Database
	Logging to stdout
	Compiled Translations
	Elasticsearch Hosting
	Updates to Requirements
	The Procfile
	Deploying the Application
	Deploying Application Updates

	Deployment on Docker Containers
	Installing Docker
	Building a Container Image
	Starting a Container
	Using Third-Party "Containerized" Services
	Adding a MySQL Container
	Adding an Elasticsearch Container

	The Docker Container Registry
	Deployment of Containerized Applications

	Some JavaScript Magic
	Server-side Support
	Introduction to the Bootstrap Popover Component
	Executing a Function On Page Load
	Finding DOM Elements with Selectors
	Popovers and the DOM
	Creating the Popover Components
	Ajax Requests
	Popover Update

	User Notifications
	Private Messages
	Database Support for Private Messages
	Sending a Private Message
	Viewing Private Messages

	Static Message Notification Badge
	Dynamic Message Notification Badge
	Delivering Notifications to Clients

	Background Jobs
	Introduction to Task Queues
	Using RQ
	Creating a Task
	Running the RQ Worker
	Executing Tasks
	Reporting Task Progress

	Database Representation of Tasks
	Integrating RQ with the Flask Application
	Sending Emails from the RQ Task
	Task Helpers
	Implementing the Export Task
	Export Functionality in the Application
	Progress Notifications
	Deployment Considerations
	Deployment on a Linux Server
	Deployment on Heroku
	Deployment on Docker


	Application Programming Interfaces (APIs)
	REST as a Foundation of API Design
	Client-Server
	Layered System
	Cache
	Code On Demand
	Stateless
	Uniform Interface

	Implementing an API Blueprint
	Representing Users as JSON Objects
	Representing Collections of Users
	Error Handling
	User Resource Endpoints
	Retrieving a User
	Retrieving Collections of Users
	Registering New Users
	Editing Users

	API Authentication
	Tokens In the User Model
	Token Requests
	Protecting API Routes with Tokens
	Revoking Tokens

	API Friendly Error Messages
	A Last Word


