

The New and Improved Flask
Mega-Tutorial (2024 Edition)

Miguel Grinberg

Jan 09, 2025

4. Database

The topic of this chapter is extremely important. For most applications, there is going to be a need to
maintain persistent data that can be retrieved e!ciently, and this is exactly what databases are made
for.

The GitHub links for this chapter are: Browse
1
, Zip

2
, Di!

3
.

4.1. Databases in Flask

As I'm sure you have heard already, Flask does not support databases natively. This is one of the
many areas in which Flask is intentionally not opinionated, which is great, because you have the
freedom to choose the database that best fits your application instead of being forced to adapt to one.

There are great choices for databases in Python, many of them with Flask extensions that make a
better integration with the application. The databases can be separated into two big groups, those
that follow the relational model, and those that do not. The latter group is often called NoSQL,
indicating that they do not implement the popular relational query language SQL4. While there are
great database products in both groups, my opinion is that relational databases are a better match for
applications that have structured data such as lists of users, blog posts, etc., while NoSQL databases
tend to be better for data that has a less defined structure. This application, like most others, can be
implemented using either type of database, but for the reasons stated above, I'm going to go with a
relational database.

In Chapter 3 I showed you a first Flask extension. In this chapter I'm going to use two more.
The first is Flask-SQLAlchemy5, an extension that provides a Flask-friendly wrapper to the popular
SQLAlchemy6 package, which is an Object Relational Mapper7 or ORM. ORMs allow applications

1 https://github.com/miguelgrinberg/microblog/tree/v0.4
2 https://github.com/miguelgrinberg/microblog/archive/v0.4.zip
3 https://github.com/miguelgrinberg/microblog/compare/v0.3...v0.4
4 https://en.wikipedia.org/wiki/SQL
5 http://packages.python.org/Flask-SQLAlchemy
6 http://www.sqlalchemy.org
7 http://en.wikipedia.org/wiki/Object-relational_mapping

39

https://github.com/miguelgrinberg/microblog/tree/v0.4
https://github.com/miguelgrinberg/microblog/archive/v0.4.zip
https://github.com/miguelgrinberg/microblog/compare/v0.3...v0.4
https://en.wikipedia.org/wiki/SQL
http://packages.python.org/Flask-SQLAlchemy
http://www.sqlalchemy.org
http://en.wikipedia.org/wiki/Object-relational_mapping

The New and Improved Flask Mega-Tutorial (2024 Edition)

to manage a database using high-level entities such as classes, objects and methods instead of tables
and SQL. The job of the ORM is to translate the high-level operations into database commands.

The nice thing about SQLAlchemy is that it is an ORM not for one, but for many relational databases.
SQLAlchemy supports a long list of database engines, including the popular MySQL8, PostgreSQL9

and SQLite10. This is extremely powerful, because you can do your development using a simple
SQLite database that does not require a server, and then when the time comes to deploy the application
on a production server you can choose a more robust MySQL or PostgreSQL server, without having
to change your application.

To install Flask-SQLAlchemy in your virtual environment, make sure you have activated it first, and
then run:

(venv) $ pip install flask-sqlalchemy

4.2. Database Migrations

Most database tutorials I've seen cover creation and use of a database, but do not adequately address
the problem of making updates to an existing database as the application needs change or grow.
This is hard because relational databases are centered around structured data, so when the structure
changes the data that is already in the database needs to be migrated to the modified structure.

The second extension that I'm going to present in this chapter is Flask-Migrate11, which is actually one
created by myself. This extension is a Flask wrapper for Alembic12, a database migration framework
for SQLAlchemy. Working with database migrations adds a bit of work to get a database started, but
that is a small price to pay for a robust way to make changes to your database in the future.

The installation process for Flask-Migrate is similar to other extensions you have seen:

8 https://www.mysql.com/
9 https://www.postgresql.org/

10 https://www.sqlite.org/
11 https://github.com/miguelgrinberg/flask-migrate
12 https://alembic.sqlalchemy.org/

40 Database

https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/
https://github.com/miguelgrinberg/flask-migrate
https://alembic.sqlalchemy.org/

The New and Improved Flask Mega-Tutorial (2024 Edition)

(venv) $ pip install flask-migrate

4.3. Flask-SQLAlchemy Configuration

During development, I'm going to use a SQLite database. SQLite databases are the most convenient
choice for developing small applications, sometimes even not so small ones, as each database is stored
in a single file on disk and there is no need to run a database server like MySQL and PostgreSQL.

Flask-SQLAlchemy needs a new configuration item added to the config file:

Listing 4.1: config.py: Flask-SQLAlchemy configuration
import os
basedir = os.path.abspath(os.path.dirname(__file__))

class Config:
...
SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \

'sqlite:///' + os.path.join(basedir, 'app.db')

The Flask-SQLAlchemy extension takes the location of the application's database from the
SQLALCHEMY_DATABASE_URI configuration variable. As you recall from Chapter 3, it is in gen-
eral a good practice to set configuration from environment variables, and provide a fallback value
when the environment does not define the variable. In this case I'm taking the database URL from
the DATABASE_URL environment variable, and if that isn't defined, I'm configuring a database named
app.db located in the main directory of the application, which is stored in the basedir variable.

The database is going to be represented in the application by the database instance. The database
migration engine will also have an instance. These are objects that need to be created after the
application, in the app/__init__.py file:

Listing 4.2: app/__init__.py: Flask-SQLAlchemy and Flask-Migrate ini-
tialization

from flask import Flask
from config import Config
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

app = Flask(__name__)
app.config.from_object(Config)
db = SQLAlchemy(app)

(continues on next page)

Flask-SQLAlchemy Configuration 41

The New and Improved Flask Mega-Tutorial (2024 Edition)

(continued from previous page)
migrate = Migrate(app, db)

from app import routes, models

I have made three changes to the __init__.py file. First, I have added a db object that represents the
database. Then I added migrate, to represent the database migration engine. Hopefully you see a
pattern in how to work with Flask extensions. Most extensions are initialized as these two. In the
last change, I'm importing a new module called models at the bottom. This module will define the
structure of the database.

4.4. Database Models

The data that will be stored in the database will be represented by a collection of classes, usually
called database models. The ORM layer within SQLAlchemy will do the translations required to
map objects created from these classes into rows in the proper database tables.

Let's start by creating a model that represents users. Using the WWW SQL Designer13 tool, I have
made the following diagram to represent the data that we want to use in the users table:

The id field is usually in all models, and is used as the primary key. Each user in the database will
be assigned a unique id value, stored in this field. Primary keys are, in most cases, automatically
assigned by the database, so I just need to provide the id field marked as a primary key.

The username, email and password_hash fields are defined as strings (or VARCHAR in database jar-
gon), and their maximum lengths are specified so that the database can optimize space usage. While
the username and email fields are self-explanatory, the password_hash fields deserves some at-
tention. I want to make sure that the application that I'm building adopts security best practices, and
for that reason I will not be storing user passwords in plain text. The problem with storing passwords
is that if the database ever becomes compromised, the attackers will have access to the passwords,
and that could be devastating for users. Instead of writing the passwords directly, I'm going to write
password hashes, which greatly improve security. This is going to be the topic of another chapter, so
don't worry about it too much for now.

13 http://ondras.zarovi.cz/sql/demo

42 Database

http://ondras.zarovi.cz/sql/demo

The New and Improved Flask Mega-Tutorial (2024 Edition)

So now that I know what I want for my users table, I can translate that into code in the new
app/models.py module:

Listing 4.3: app/models.py: User database model
from typing import Optional
import sqlalchemy as sa
import sqlalchemy.orm as so
from app import db

class User(db.Model):
id: so.Mapped[int] = so.mapped_column(primary_key=True)
username: so.Mapped[str] = so.mapped_column(sa.String(64), index=True,

unique=True)
email: so.Mapped[str] = so.mapped_column(sa.String(120), index=True,

unique=True)
password_hash: so.Mapped[Optional[str]] = so.mapped_column(sa.String(256))

def __repr__(self):
return '<User {}>'.format(self.username)

I start by importing the sqlalchemy and sqlalchemy.orm modules from the SQLAlchemy pack-
age, which provide most of the elements that are needed to work with a database. The sqlalchemy
module includes general purpose database functions and classes such as types and query building
helpers, while sqlalchemy.orm provides the support for using models. Given that these two mod-
ule names are long and will need to be referenced often, the sa and so aliases are defined directly
in the import statements. The db instance from Flask-SQLAlchemy and the Optional typing hint
from Python are imported as well.

The User class created above will represent users stored in the database. The class inherits from
db.Model, a base class for all models from Flask-SQLAlchemy. The User model defines several
fields as class variables. These are the columns that will be created in the corresponding database
table.

Fields are assigned a type using Python type hints, wrapped with SQLAlchemy's so.Mapped generic
type. A type declaration such as so.Mapped[int] or so.Mapped[str] define the type of the col-
umn, and also make values required, or non-nullable in database terms. To define a column that is
allowed to be empty or nullable, the Optional helper from Python is also added, as password_hash
demonstrates.

In most cases defining a table column requires more than the column type. SQLAlchemy uses a so.
mapped_column() function call assigned to each column to provide this additional configuration. In
the case of id above, the column is configured as the primary key. For string columns many databases
require a length to be given, so this is also included. I have included other optional arguments that
allow me to indicate which fields are unique and indexed, which is important so that database is
consistent and searches are e!cient.

The __repr__method tells Python how to print objects of this class, which is going to be useful for
debugging. You can see the __repr__() method in action in the Python interpreter session below:

Database Models 43

The New and Improved Flask Mega-Tutorial (2024 Edition)

>>> from app.models import User
>>> u = User(username='susan', email='susan@example.com')
>>> u
<User susan>

4.5. Creating The Migration Repository

The model class created in the previous section defines the initial database structure (or schema) for
this application. But as the application continues to grow, it is likely that I will need to make changes
to that structure such as adding new things, and sometimes to modify or remove items. Alembic (the
migration framework used by Flask-Migrate) will make these schema changes in a way that does not
require the database to be recreated from scratch every time a change is made.

To accomplish this seemingly di!cult task, Alembic maintains a migration repository, which is a
directory in which it stores its migration scripts. Each time a change is made to the database schema,
a migration script is added to the repository with the details of the change. To apply the migrations
to a database, these migration scripts are executed in the sequence they were created.

Flask-Migrate exposes its commands through the flask command. You have already seen flask
run, which is a sub-command that is native to Flask. The flask db sub-command is added by
Flask-Migrate to manage everything related to database migrations. So let's create the migration
repository for microblog by running flask db init:

(venv) $ flask db init
Creating directory /home/miguel/microblog/migrations ... done
Creating directory /home/miguel/microblog/migrations/versions ... done
Generating /home/miguel/microblog/migrations/alembic.ini ... done
Generating /home/miguel/microblog/migrations/env.py ... done
Generating /home/miguel/microblog/migrations/README ... done
Generating /home/miguel/microblog/migrations/script.py.mako ... done
Please edit configuration/connection/logging settings in
'/home/miguel/microblog/migrations/alembic.ini' before proceeding.

Remember that the flask command relies on the FLASK_APP environment variable to know where
the Flask application lives. For this application, you want to set FLASK_APP to the value microblog.
py, as discussed in Chapter 1. If you included a .flaskenv file in your project, then the all sub-
commands of the flask command will automatically have access to the application.

After you run the flask db init command, you will find a new migrations directory, with a few
files and a versions subdirectory inside. All these files should be treated as part of your project from
now on, and in particular, should be added to source control along with your application code.

44 Database

The New and Improved Flask Mega-Tutorial (2024 Edition)

4.6. The First Database Migration

With the migration repository in place, it is time to create the first database migration, which will
include the users table that maps to the User database model. There are two ways to create a
database migration: manually or automatically. To generate a migration automatically, Alembic
compares the database schema as defined by the database models, against the actual database schema
currently used in the database. It then populates the migration script with the changes necessary to
make the database schema match the application models. In this case, since there is no previous
database, the automatic migration will add the entire Usermodel to the migration script. The flask
db migrate sub-command generates these automatic migrations:

(venv) $ flask db migrate -m "users table"
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.autogenerate.compare] Detected added table 'user'
INFO [alembic.autogenerate.compare] Detected added index 'ix_user_email' on '['email']'
INFO [alembic.autogenerate.compare] Detected added index 'ix_user_username' on '['username']'
Generating /home/miguel/microblog/migrations/versions/e517276bb1c2_users_table.py ... done

The output of the command gives you an idea of what Alembic included in the migration. The first
two lines are informational and can usually be ignored. It then says that it found a user table and
two indexes. Then it tells you where it wrote the migration script. The e517276bb1c2 value is an
automatically generated and unique code for the migration (it will be di"erent for you). The comment
given with the -m option is optional, it just adds a short descriptive text to the migration.

The generated migration script is now part of your project, and if you are using git or other source
control tool, it needs to be incorporated as an additional source file, along with all other files stored
in the migrations directory. You are welcome to inspect the script if you are curious to see how it
looks. You will find that it has two functions called upgrade() and downgrade(). The upgrade()
function applies the migration, and the downgrade() function removes it. This allows Alembic to
migrate the database to any point in the history, even to older versions, by using the downgrade path.

The flask db migrate command does not make any changes to the database, it just generates the
migration script. To apply the changes to the database, the flask db upgrade command must be
used.

(venv) $ flask db upgrade
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade -> e517276bb1c2, users table

Because this application uses SQLite, the upgrade command will detect that a database does not
exist and will create it (you will notice a file named app.db is added after this command finishes, that
is the SQLite database). When working with database servers such as MySQL and PostgreSQL, you
have to create the database in the database server before running upgrade.

Note that Flask-SQLAlchemy uses a "snake case" naming convention for database tables by default.
For the User model above, the corresponding table in the database will be named user. For a

The First Database Migration 45

The New and Improved Flask Mega-Tutorial (2024 Edition)

AddressAndPhone model class, the table would be named address_and_phone. If you prefer to
choose your own table names, you can add an attribute named __tablename__ to the model class,
set to the desired name as a string.

4.7. Database Upgrade and Downgrade Workflow

The application is in its infancy at this point, but it does not hurt to discuss what is going to be the
database migration strategy going forward. Imagine that you have your application on your develop-
ment machine, and also have a copy deployed to a production server that is online and in use.

Let's say that for the next release of your application you have to introduce a change to your models,
for example a new table needs to be added. Without migrations, you would need to figure out how
to change the schema of your database, both in your development machine and then again in your
server, and this could be a lot of work.

But with database migration support, after you modify the models in your application you generate
a new migration script (flask db migrate), you review it to make sure the automatic generation
did the right thing, and then apply the changes to your development database (flask db upgrade).
You will add the migration script to source control and commit it.

When you are ready to release the new version of the application to your production server, all you
need to do is grab the updated version of your application, which will include the new migration
script, and run flask db upgrade. Alembic will detect that the production database is not updated
to the latest revision of the schema, and run all the new migration scripts that were created after the
previous release.

As I mentioned earlier, you also have a flask db downgrade command, which undoes the last
migration. While you will be unlikely to need this option on a production system, you may find it
very useful during development. You may have generated a migration script and applied it, only to
find that the changes that you made are not exactly what you need. In this case, you can downgrade
the database, delete the migration script, and then generate a new one to replace it.

4.8. Database Relationships

Relational databases are good at storing relations between data items. Consider the case of a user
writing a blog post. The user will have a record in the users table, and the post will have a record
in the posts table. The most e!cient way to record who wrote a given post is to link the two related
records.

Once a link between a user and a post is established, the database can answer queries about this link.
The most trivial one is when you have a blog post and need to know what user wrote it. A more
complex query is the reverse of this one. If you have a user, you may want to know all the posts that
this user wrote. SQLAlchemy helps with both types of queries.

46 Database

The New and Improved Flask Mega-Tutorial (2024 Edition)

Let's expand the database to store blog posts to see relationships in action. Here is the schema for a
new posts table:

The posts table will have the required id, the body of the post and a timestamp. But in addition
to these expected fields, I'm adding a user_id field, which links the post to its author. You've seen
that all users have a id primary key, which is unique. The way to link a blog post to the user that
authored it is to add a reference to the user's id, and that is exactly what the user_id field is for.
This user_id field is called a foreign key, because it references a primary key of another table. The
database diagram above shows foreign keys as a link between the field and the id field of the table it
refers to. This kind of relationship is called a one-to-many, because "one" user writes "many" posts.

The modified app/models.py is shown below:

Listing 4.4: app/models.py: Posts database table and relationship
from datetime import datetime, timezone
from typing import Optional
import sqlalchemy as sa
import sqlalchemy.orm as so
from app import db

class User(db.Model):
id: so.Mapped[int] = so.mapped_column(primary_key=True)
username: so.Mapped[str] = so.mapped_column(sa.String(64), index=True,

unique=True)
email: so.Mapped[str] = so.mapped_column(sa.String(120), index=True,

unique=True)
password_hash: so.Mapped[Optional[str]] = so.mapped_column(sa.String(256))

posts: so.WriteOnlyMapped['Post'] = so.relationship(
back_populates='author')

def __repr__(self):
return '<User {}>'.format(self.username)

class Post(db.Model):
id: so.Mapped[int] = so.mapped_column(primary_key=True)
body: so.Mapped[str] = so.mapped_column(sa.String(140))
timestamp: so.Mapped[datetime] = so.mapped_column(

index=True, default=lambda: datetime.now(timezone.utc))
user_id: so.Mapped[int] = so.mapped_column(sa.ForeignKey(User.id),

index=True)

author: so.Mapped[User] = so.relationship(back_populates='posts')

(continues on next page)

Database Relationships 47

	Preface
	Who This Book Is For
	Requirements
	About The Example Application
	How To Work With The Example Code
	Conventions Used In This Book
	Acknowledgements

	Hello, World!
	Installing Python
	Installing Flask
	A "Hello, World" Flask Application

	Templates
	What Are Templates?
	Conditional Statements
	Loops
	Template Inheritance

	Web Forms
	Introduction to Flask-WTF
	User Login Form
	Form Templates
	Form Views
	Receiving Form Data
	Improving Field Validation
	Generating Links

	Database
	Databases in Flask
	Database Migrations
	Flask-SQLAlchemy Configuration
	Database Models
	Creating The Migration Repository
	The First Database Migration
	Database Upgrade and Downgrade Workflow
	Database Relationships
	Playing with the Database
	Shell Context

	User Logins
	Password Hashing
	Introduction to Flask-Login
	Preparing The User Model for Flask-Login
	User Loader Function
	Logging Users In
	Logging Users Out
	Requiring Users To Login
	Showing The Logged-In User in Templates
	User Registration

	Profile Page and Avatars
	User Profile Page
	Avatars
	Using Jinja Sub-Templates
	More Interesting Profiles
	Recording The Last Visit Time For a User
	Profile Editor

	Error Handling
	Error Handling in Flask
	Debug Mode
	Custom Error Pages
	Sending Errors by Email
	Logging to a File
	Fixing the Duplicate Username Bug
	Enabling Debug Mode Permanently

	Followers
	Database Relationships Revisited
	One-to-Many
	Many-to-Many
	Many-to-One and One-to-One

	Representing Followers
	Database Model Representation
	Adding and Removing "follows"
	Obtaining the Posts from Followed Users
	Joins
	Filters
	Sorting

	Combining Own and Followed Posts
	Outer Joins
	Compound Filters
	Grouping

	Unit Testing the User Model
	Integrating Followers with the Application

	Pagination
	Submission of Blog Posts
	Displaying Blog Posts
	Making It Easier to Find Users to Follow
	Pagination of Blog Posts
	Page Navigation
	Pagination in the User Profile Page

	Email Support
	Introduction to Flask-Mail
	Flask-Mail Usage
	A Simple Email Framework
	Requesting a Password Reset
	Password Reset Tokens
	Sending a Password Reset Email
	Resetting a User Password
	Asynchronous Emails

	Facelift
	CSS Frameworks
	Introducing Bootstrap
	Using Bootstrap
	Rendering Bootstrap Forms
	Rendering of Blog Posts
	Rendering Pagination Links
	Before And After

	Dates and Times
	Timezone Hell
	Timezone Conversions
	Introducing Moment.js and Flask-Moment
	Using Moment.js

	I18n and L10n
	Introduction to Flask-Babel
	Marking Texts to Translate In Python Source Code
	Marking Texts to Translate In Templates
	Extracting Text to Translate
	Generating a Language Catalog
	Updating the Translations
	Translating Dates and Times
	Command-Line Enhancements

	Ajax
	Server-side vs. Client-side
	Live Translation Workflow
	Language Identification
	Displaying a "Translate" Link
	Using a Third-Party Translation Service
	Ajax From The Server
	Ajax From The Client

	A Better Application Structure
	Current Limitations
	Blueprints
	Error Handling Blueprint
	Authentication Blueprint
	Main Application Blueprint

	The Application Factory Pattern
	Unit Testing Improvements
	Environment Variables
	Requirements File

	Full-Text Search
	Introduction to Full-Text Search Engines
	Installing Elasticsearch
	Elasticsearch Tutorial
	Elasticsearch Configuration
	A Full-Text Search Abstraction
	Integrating Searches with SQLAlchemy
	Search Form
	Search View Function

	Deployment on Linux
	Traditional Hosting
	Creating an Ubuntu Server
	Using an SSH Client
	Password-less Logins
	Securing Your Server
	Installing Base Dependencies
	Installing the Application
	Setting Up MySQL
	Setting Up Gunicorn and Supervisor
	Setting Up Nginx
	Deploying Application Updates
	Raspberry Pi Hosting

	Deployment on Heroku
	Hosting on Heroku
	Creating a Heroku account
	Installing the Heroku CLI
	Setting Up Git
	Creating a Heroku Application
	The Ephemeral File System
	Working with a Heroku Postgres Database
	Logging to stdout
	Compiled Translations
	Elasticsearch Hosting
	Updates to Requirements
	The Procfile
	Deploying the Application
	Deploying Application Updates

	Deployment on Docker Containers
	Installing Docker
	Building a Container Image
	Starting a Container
	Using Third-Party "Containerized" Services
	Adding a MySQL Container
	Adding an Elasticsearch Container

	The Docker Container Registry
	Deployment of Containerized Applications

	Some JavaScript Magic
	Server-side Support
	Introduction to the Bootstrap Popover Component
	Executing a Function On Page Load
	Finding DOM Elements with Selectors
	Popovers and the DOM
	Creating the Popover Components
	Ajax Requests
	Popover Update

	User Notifications
	Private Messages
	Database Support for Private Messages
	Sending a Private Message
	Viewing Private Messages

	Static Message Notification Badge
	Dynamic Message Notification Badge
	Delivering Notifications to Clients

	Background Jobs
	Introduction to Task Queues
	Using RQ
	Creating a Task
	Running the RQ Worker
	Executing Tasks
	Reporting Task Progress

	Database Representation of Tasks
	Integrating RQ with the Flask Application
	Sending Emails from the RQ Task
	Task Helpers
	Implementing the Export Task
	Export Functionality in the Application
	Progress Notifications
	Deployment Considerations
	Deployment on a Linux Server
	Deployment on Heroku
	Deployment on Docker

	Application Programming Interfaces (APIs)
	REST as a Foundation of API Design
	Client-Server
	Layered System
	Cache
	Code On Demand
	Stateless
	Uniform Interface

	Implementing an API Blueprint
	Representing Users as JSON Objects
	Representing Collections of Users
	Error Handling
	User Resource Endpoints
	Retrieving a User
	Retrieving Collections of Users
	Registering New Users
	Editing Users

	API Authentication
	Tokens In the User Model
	Token Requests
	Protecting API Routes with Tokens
	Revoking Tokens

	API Friendly Error Messages
	A Last Word

