
Jellyfish
Essen�als

Java Edi�on

Android Studio

Neil Smyth Payload
publishing

Android Studio Jellyfish
Essentials

Java Edition

Android Studio Jellyfish Essentials – Java Edition

ISBN: 978-1-951442-86-6

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
publishing

https://www.payloadbooks.com
Copyright
“

https://www.payloadbooks.com

597

Chapter 72

72. An Android Room Database and
Repository Tutorial
This chapter will combine the knowledge gained in “The Android Room Persistence Library” with the initial
project created in the previous chapter to provide a detailed tutorial demonstrating how to implement SQLite-
based database storage using the Room persistence library. In keeping with the Android architectural guidelines,
the project will use a view model and repository. The tutorial will use all the elements covered in “The Android
Room Persistence Library” including entities, a Data Access Object, a Room Database, and asynchronous
database queries.

72.1 About the RoomDemo Project
The user interface layout created in the previous chapter was the first step in creating a rudimentary inventory
app to store product names and quantities. When completed, the app will provide the ability to add, delete and
search for database entries while displaying a scrollable list of all products currently stored in the database. This
product list will update automatically as database entries are added or deleted.

72.2 Modifying the Build Configuration
Launch Android Studio and open the RoomDemo project started in the previous chapter. Before adding any
new classes to the project, the first step is to add some additional libraries and plugins to the build configuration,
including the Room persistence library. The first step is to add the ksp plugin and additional libraries to the
Gradle build configuration. Using the Project tool window, locate and edit the Gradle Scripts -> libs.versions.toml
file as follows (keeping in mind that a more recent version of the libraries may now be available):
[versions]

.

.

roomRuntime = "2.6.1"
fragment = "1.7.0"

[libraries]

.

.

androidx-room-compiler = { module = "androidx.room:room-compiler", version.ref =
"roomRuntime" }
androidx-room-runtime = { group = "androidx.room", name = "room-runtime",
version.ref = "roomRuntime" }
androidx-fragment = { group = "androidx.fragment", name = "fragment", version.ref
= "fragment" }
.

.

Click the Sync Now link to commit the changes. Next, make the following changes to the module level build.
gradle.kts file (app -> Gradle Scripts -> build.gradle.kts (Module :app)):

598

An Android Room Database and Repository Tutorial

.

.

dependencies {

.

.

 implementation(libs.androidx.room.runtime)
 implementation(libs.androidx.fragment)
 annotationProcessor(libs.androidx.room.compiler)
.

.

}

72.3 Building the Entity
This project will begin by creating the entity defining the database table schema. The entity will consist of an
integer for the product id, a string column to hold the product name, and another integer value to store the
quantity.

The product id column will serve as the primary key and will be auto-generated. Table 72-1 summarizes the
structure of the entity:

Column Data Type

productid Integer / Primary Key / Auto Increment

productname String

productquantity Integer

Table 72-1
Add a class file for the entity by right-clicking on the app -> java -> com.ebookfrenzy.roomdemo entry in the
Project tool window and selecting the New -> Java Class menu option. In the new class dialog, name the class
Product, select the Class entry in the list, and press the keyboard return key to generate the file.

When the Product.java file opens in the editor, modify it so that it reads as follows:
package com.ebookfrenzy.roomdemo;

public class Product {

 private int id;
 private String name;
 private int quantity;

 public Product(String name, int quantity) {
 this.name = name;
 this.quantity = quantity;
 }

599

An Android Room Database and Repository Tutorial

 public int getId() {
 return this.id;
 }
 public String getName() {
 return this.name;
 }

 public int getQuantity() {
 return this.quantity;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
}

The class now has variables for the database table columns and matching getter and setter methods. Of course,
this class does not become an entity until it has been annotated. With the class file still open in the editor, add
annotations and corresponding import statements:
package com.ebookfrenzy.roomdemo;

import androidx.room.ColumnInfo;
import androidx.room.Entity;
import androidx.room.PrimaryKey;

@Entity(tableName = "products")
public class Product {

 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "productId")
 private int id;

 @ColumnInfo(name = "productName")
 private String name;

 private int quantity;

.

.

}

600

An Android Room Database and Repository Tutorial

These annotations declare this as the entity for a table named products and assign column names for the id and
name variables. The id column is also configured to be the primary key and auto-generated. Since it will not be
necessary to reference the quantity column in SQL queries, a column name has not been assigned to the quantity
variable.

72.4 Creating the Data Access Object
With the product entity defined, the next step is to create the DAO interface. Referring again to the Project tool
window, right-click on the app -> java -> com.ebookfrenzy.roomdemo entry and select the New -> Java Class
menu option. In the new class dialog, enter ProductDao into the Name field and select Interface from the list as
highlighted in Figure 72-1:

Figure 72-1

Press the Return key to generate the new interface and, with the ProductDao.java file loaded into the code editor,
make the following changes:
package com.ebookfrenzy.roomdemo;

import androidx.lifecycle.LiveData;
import androidx.room.Dao;
import androidx.room.Insert;
import androidx.room.Query;

import java.util.List;

@Dao
public interface ProductDao {

 @Insert
 void insertProduct(Product product);

 @Query("SELECT * FROM products WHERE productName = :name")
 List<Product> findProduct(String name);

 @Query("DELETE FROM products WHERE productName = :name")
 void deleteProduct(String name);

 @Query("SELECT * FROM products")
 LiveData<List<Product>> getAllProducts();
}

601

An Android Room Database and Repository Tutorial

The DAO implements methods to insert, find and delete records from the products database. The insertion
method is passed a Product entity object containing the data to be stored, while the methods to find and
delete records are passed a string containing the name of the product on which to perform the operation. The
getAllProducts() method returns a LiveData object containing all of the records within the database. This method
will be used to keep the RecyclerView product list in the user interface layout synchronized with the database.

72.5 Adding the Room Database
The last task before adding the repository to the project is implementing the Room Database instance. Add a
new class to the project named ProductRoomDatabase, this time with the Class option selected.

Once the file has been generated, modify it as follows using the steps outlined in the “The Android Room
Persistence Library” chapter:
package com.ebookfrenzy.roomdemo;

import android.content.Context;

import androidx.room.Database;
import androidx.room.Room;
import androidx.room.RoomDatabase;

@Database(entities = {Product.class}, version = 1)
public abstract class ProductRoomDatabase extends RoomDatabase {

 public abstract ProductDao productDao();
 private static ProductRoomDatabase INSTANCE;

 static ProductRoomDatabase getDatabase(final Context context) {
 if (INSTANCE == null) {
 synchronized (ProductRoomDatabase.class) {
 INSTANCE =
 Room.databaseBuilder(context.getApplicationContext(),
 ProductRoomDatabase.class,
 "product_database").build();
 }
 }
 return INSTANCE;
 }
}

72.6 Adding the Repository
Add a new class named ProductRepository to the project, with the Class option selected.

The repository class will be responsible for interacting with the Room database on behalf of the ViewModel.
It must provide methods that use the DAO to insert, delete, and query product records. Except for the
getAllProducts() DAO method (which returns a LiveData object), these database operations must be performed
on separate threads from the main thread.

Remaining within the ProductRepository.java file, add the code for a handler to return the search results to the

602

An Android Room Database and Repository Tutorial

repository thread:
package com.ebookfrenzy.roomdemo;

import android.os.Handler;
import android.os.Looper;
import android.os.Message;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import androidx.lifecycle.MutableLiveData;
import java.util.List;

public class ProductRepository {

 private final MutableLiveData<List<Product>> searchResults =
 new MutableLiveData<>();
 private List<Product> results;

 Handler handler = new Handler(Looper.getMainLooper()) {
 @Override public void handleMessage(Message msg) {
 searchResults.setValue(results);
 }
 };
}

The above declares a MutableLiveData variable named searchResults into which the results of a search operation
are stored whenever an asynchronous search task completes (later in the tutorial, an observer within the
ViewModel will monitor this live data object).

The repository class must now provide some methods the ViewModel can call to initiate these operations.
However, the repository needs to obtain the DAO reference via a ProductRoomDatabase instance to do this.
Add a constructor method to the ProductRepository class to perform these tasks:
.

.

import android.app.Application;
.

.

public class ProductRepository {

 private final MutableLiveData<List<Product>> searchResults =

 new MutableLiveData<>();

 private List<Product> results;
 private final ProductDao productDao;

 public ProductRepository(Application application) {

603

An Android Room Database and Repository Tutorial

 ProductRoomDatabase db;
 db = ProductRoomDatabase.getDatabase(application);
 productDao = db.productDao();
 }
.

.

With a reference to DAO stored, the methods are ready to be added to the ProductRepository class file as follows:
public void insertProduct(Product newproduct) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> productDao.insertProduct(newproduct));

 executor.shutdown();

}

public void deleteProduct(String name) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> productDao.deleteProduct(name));

 executor.shutdown();

}

public void findProduct(String name) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> {

results = productDao.findProduct(name);

handler.sendEmptyMessage(0);

 });

 executor.shutdown();

}

In the cases of the insertion and deletion methods, the appropriate new threads are created and used to perform
the corresponding database operation. In the case of the findProduct() method, a message is sent to the handler
indicating that new results are available.

One final task remains to complete the repository class. The RecyclerView in the user interface layout must
keep up to date with the current list of products stored in the database. The ProductDao class already includes
a method named getAllProducts() which uses a SQL query to select all of the database records and return them
wrapped in a LiveData object. The repository needs to call this method once on initialization and store the result
within a LiveData object that can be observed by the ViewModel and, in turn, by the UI controller. Once this has
been set up, the UI controller observer will be notified each time a change occurs to the database table, and the
RecyclerView can be updated with the latest product list. Remaining within the ProductRepository.java file, add
a LiveData variable and call to the DAO getAllProducts() method within the constructor:
.

.

import androidx.lifecycle.LiveData;
.

.

public class ProductRepository {

604

An Android Room Database and Repository Tutorial

 private final MutableLiveData<List<Product>> searchResults =

 new MutableLiveData<>();

 private List<Product> results;

 private final LiveData<List<Product>> allProducts;
 private final ProductDao productDao;

 public ProductRepository(Application application) {

 ProductRoomDatabase db;

 db = ProductRoomDatabase.getDatabase(application);

 productDao = db.productDao();

 allProducts = productDao.getAllProducts();
 }

.

.

}

To complete the repository, add methods that the ViewModel can call to obtain references to the allProducts and
searchResults live data objects:
public LiveData<List<Product>> getAllProducts() {

 return allProducts;

}

public MutableLiveData<List<Product>> getSearchResults() {

 return searchResults;

}

72.7 Adding the ViewModel
The ViewModel is responsible for creating an instance of the repository and providing methods, and LiveData
objects that the UI controller can utilize to keep the user interface synchronized with the underlying database.
As implemented in ProductRepository.java, the repository constructor requires access to the application context
to get a Room Database instance. To make the application context accessible within the ViewModel so it can be
passed to the repository, the ViewModel needs to subclass AndroidViewModel instead of ViewModel.

Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-clicking it, and
selecting the New -> Java Class menu option. Next, name the new class MainViewModel and press the keyboard
Enter key. Finally, edit the new class file to change the class to extend AndroidViewModel and implement the
default constructor:
package com.ebookfrenzy.roomdemo.ui.main;

import android.app.Application;
import androidx.lifecycle.AndroidViewModel;
import androidx.lifecycle.LiveData;
import androidx.lifecycle.MutableLiveData;
import com.ebookfrenzy.roomdemo.Product;
import com.ebookfrenzy.roomdemo.ProductRepository;
import java.util.List;

