
Essentials

iOS 18 App

Payload
publishing

Development

iOS 18 App Development
Essentials

iOS 18 App Development Essentials

ISBN-13: 978-1-951442-99-6

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
publishing

https://www.payloadbooks.com

https://www.payloadbooks.com

323

Chapter 40

40. A SwiftUI Custom Container
Tutorial
The previous chapter explained how to create a custom container in SwiftUI. This chapter will build on this
knowledge to create an app that presents a checklist interface using a custom container view.

40.1 About the Custom Container Project
The project we will create in this chapter is a checklist app that uses a custom container view. The container will
support Text subviews and allow those items to be selected and deselected when tapped. Before completing the
project, we will also add support for section headers. The completed app will appear as illustrated in Figure 40-1:

Figure 40-1

40.2 Creating the CustomContainerDemo Project
Launch Xcode and select the option to create a new Multiplatform App project named CustomContainerDemo.

324

A SwiftUI Custom Container Tutorial

40.3 Adding the Sample Data
Our example app simulates an appliance repair checklist consisting of a scrollable list of checkable items. The
first step in the design process is adding arrays containing checklist items. Edit the ContentView.swift file to
declare these arrays as follows:
import SwiftUI

let washerlist = [
 "Replace gasket seal",
 "Test suspension rods",
 "Clean drain filter"
]

let dryerlist = [
 "Clean lint filter",
 "Check exhaust vent",
 "Replace drum rollers"
]
.

.

40.4 Declaring the Item View
Each checklist item will be displayed using a custom view. When this item view is called, it is passed a ViewBuilder
closure containing the subview to be displayed. We will enhance the item view later in the chapter, but for now,
declare the basic view outline as follows:
struct CheckItemView<Content: View>: View {

 @ViewBuilder let content: Content

 var body: some View {

 ZStack {

 RoundedRectangle(cornerRadius: 50)

 .fill(.white)

 .padding(5)

 HStack {

 content

 .font(.title)

 .fontWeight(.bold)

 }

 .padding(18)

 }

 .padding(5)

 .frame(width: .infinity)

 }

}

325

A SwiftUI Custom Container Tutorial

40.5 Designing the Container
With an initial version of the item view added, we can start work on the custom container view. Once again, the
view will be passed a ViewBuilder closure containing the subviews. Using the ForEach(subviews:) initializer, we
can loop through the subviews, passing each to CheckItemView for rendering:
struct CheckList<Content: View>: View {

 @ViewBuilder var content: Content

 var body: some View {

 ScrollView(.vertical) {

 VStack(spacing: 20) {

 ForEach(subviews: content) { subview in

 CheckItemView {

 subview

 }

 }

 }

 }

 }

}

40.6 Using the Custom Container
Though more work will be necessary before the app resembles Figure 40-1, we have completed enough that
the checklist should at least appear in the preview panel. To test our progress so far, modify the ContentView
declaration to pass the checklist items to the container view:
struct ContentView: View {

 var body: some View {

 CheckList {
 ForEach(washerlist, id: \.self) { item in
 Text(item)
 }

 ForEach(dryerlist, id: \.self) { item in
 Text(item)
 }
 }
 }

}

When the view is rendered in the preview panel, it should appear as shown in Figure 40-2:

326

A SwiftUI Custom Container Tutorial

Figure 40-2

40.7 Completing the Item View
The next step is to complete the CheckItemView implementation to enhance the appearance with colors, shading,
and checkmark images and to add tap gesture recognition. We will begin by adding some state properties to
store the current item state (whether the item is selected or not) and configure the corresponding color:
struct CheckItemView<Content: View>: View {

 @ViewBuilder let content: Content

 @State private var color = Color.green
 @State private var isEnabled:Bool = false

 var body: some View {

 let color = (self.isEnabled ? Color.green : Color.purple)

 ZStack {

.

.

We also need to apply a tap gesture modifier to the RoundedRectangle view to toggle the isEnabled state and
apply the color state value using the .shadow() modifier:
.

.

ZStack {

 RoundedRectangle(cornerRadius: 50)

 .fill(.white)

 .shadow(color: color, radius: 5)

327

A SwiftUI Custom Container Tutorial

 .onTapGesture {
 isEnabled.toggle()
 }
 .padding(5)
.

.

Use the Preview panel to verify that the checklist items toggle between green and purple shadowing when
tapped.

The last changes to CheckItemView involve adding checkmark images and a rotation angle. We will use images
from the built-in SF Symbols library for the checkmarks and apply visual effects when the app launches and an
item is tapped. Locate the HStack in the CheckItemView declaration and make the following additions:
.

.

HStack {

 content

 .font(.title)

 .fontWeight(.bold)

 Spacer()
 Image(systemName: (isEnabled ? "checkmark.circle.fill" : "x.circle.fill"))
 .foregroundColor(color)
 .font(.largeTitle)
 .symbolEffect(.rotate, options: .nonRepeating)
 .contentTransition(.symbolEffect(.replace))
}

.padding(18)

.

.

Finally, apply the .rotationModifier() to the ZStack container as follows to tilt each item by 8 degrees:
.

.

ZStack {

 RoundedRectangle(cornerRadius: 50)

.

.

 .contentTransition(.symbolEffect(.replace))

 }

 .padding(18)

}

.padding(5)

.frame(width: .infinity)

.rotationEffect(Angle(degrees: 8))

.

.

Refresh the Preview and test that the checkmarks perform a single rotation when the view appears and that

328

A SwiftUI Custom Container Tutorial

tapping gestures toggle between checked and unchecked images. With these changes completed, the checklist
view will resemble the following figure:

Figure 40-3

40.8 Adding Section Headers
The sole remaining task is to add section support to the container. We will begin by adding a section header
view as follows:
struct ChecklistSectionHeader<Content: View>: View {

 @ViewBuilder var content: Content

 var body: some View {

 HStack {

 content

 .font(.largeTitle)

 .fontWeight(.bold)

 }

 .padding(5)

 .frame(maxWidth: .infinity)

 .background(Color.purple.opacity(0.2))

 }

}

This header view will be called from within the CheckList container view using a ForEach(sections:) loop as
follows:
struct CheckList<Content: View>: View {

 @ViewBuilder var content: Content

329

A SwiftUI Custom Container Tutorial

 var body: some View {

 ScrollView(.vertical) {

 VStack(spacing: 20) {

 ForEach(sections: content) { section in

 if !section.header.isEmpty {
 ChecklistSectionHeader {
 section.header
 }
 }

 ForEach(subviews: section.content) { subview in
 CheckItemView {

 subview

 }

 }

 }
 }

 }

 }

}

As the loop executes, each section will have an optional header and a group of subviews belonging to that
section. When calling CheckItemView, therefore, we have modified the ForEach(subviews:) construct to access
each section’s content property:
ForEach(subviews: section.content) { subview in

Modify ContentView as follows to add sections, and check the preview to confirm that the app appears as
illustrated in Figure 40-1 above:
struct ContentView: View {

 var body: some View {

 CheckList {

 Section("\(Image(systemName: "washer.fill")) Washer") {
 ForEach(washerlist, id: \.self) { item in

 Text(item)

 }

 }

 Section("\(Image(systemName: "dryer.fill")) Dryer") {
 ForEach(dryerlist, id: \.self) { item in

 Text(item)

 }

 }
 }

 }

330

A SwiftUI Custom Container Tutorial

}

40.9 Summary
This chapter demonstrated creating and using a SwiftUI custom container view, including ViewBuilder closures,
ForEach loops, and sections and headers.

