
Essentials

Jetpack

Payload
publishing

Compose 1.7

Jetpack Compose 1.7
Essentials

Jetpack Compose 1.7 Essentials

ISBN-13: 978-1-965764-03-9

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
publishing

https://www.payloadbooks.com
Copyright

“

https://www.payloadbooks.com

27

Chapter 4

4. An Example Compose Project
In the previous chapter, we created a new Compose-based Android Studio project named ComposeDemo and
took some time to explore both Android Studio and some of the project code that it generated to get us started.
With those basic steps covered, this chapter will use the ComposeDemo project as the basis for a new app. This
will involve the creation of new composable functions, introduce the concept of state, and make use of the
Preview panel in interactive mode. As with the preceding chapter, key concepts explained in basic terms here
will be covered in significantly greater detail in later chapters.

4.1 Getting started
Start Android Studio if it is not already running and open the ComposeDemo project created in the previous
chapter. Once the project has loaded, double-click on the MainActivity.kt file (located in the Project tool window
under app -> kotlin+java -> <package name>) to open it in the code editor. If necessary, switch the editor into
Split mode so that both the editor and Preview panel are visible.

4.2 Removing the template Code
Within the MainActivity.kt file, delete some of the template code so that the file reads as follows:
package com.example.composedemo

.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 ComposeDemoTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 Greeting(

 name = "Android",

 modifier = Modifier.padding(innerPadding)

)

 }

 }

 }

 }

}

@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

 Text(

 text = "Hello $name!",

 modifier = modifier

28

An Example Compose Project

)

}

@Preview(showSystemUi = true)

@Composable

fun GreetingPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

4.3 The Composable hierarchy
Before we write the composable functions that will make up our user interface, it helps to visualize the relationships
between these components. The ability of one composable to call other composables essentially allows us to
build a hierarchy tree of components. Once completed, the composable hierarchy for our ComposeDemo main
activity can be represented as shown in Figure 4-1:

Figure 4-1
All of the elements in the above diagram, except for ComponentActivity, are composable functions. Of those
functions, the Scaffold, Column, Spacer, Text, and Slider functions are built-in composables provided by
Compose. The DemoScreen, DemoText, and DemoSlider composables, on the other hand, are functions that we
will create to provide both structure to the design and the custom functionality we require for our app. You can
find the ComposeDemoTheme composable declaration in the ui.theme -> Theme.kt file.

4.4 Adding the DemoText composable
We are now going to add a new composable function to the activity to represent the DemoText item in the
hierarchy tree. The purpose of this composable is to display a text string using a font size value that adjusts in
real-time as the slider moves. Place the cursor beneath the final closing brace (}) of the MainActivity declaration
and add the following function declaration:

29

An Example Compose Project

@Composable

fun DemoText() {

}

The @Composable annotation notifies the build system that this is a composable function. When the function is
called, the plan is for it to be passed both a text string and the font size at which that text is to be displayed. This
means that we need to add some parameters to the function:
@Composable

fun DemoText(message: String, fontSize: Float) {
}

The next step is to make sure the text is displayed. To achieve this, we will make a call to the built-in Text
composable, passing through as parameters the message string, font size, and, to make the text more prominent,
a bold font weight setting:
@Composable

fun DemoText(message: String, fontSize: Float) {

 Text(
 text = message,
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold
)
}

Note that after making these changes, the code editor indicates that “sp” and “FontWeight” are undefined.
This happens because these are defined and implemented in libraries that have not yet been imported into
the MainActivity.kt file. One way to resolve this is to click on an undefined declaration so that it highlights as
shown below, and then press Alt+Enter (Opt+Enter on macOS) on the keyboard to import the missing library
automatically:

Figure 4-2
Alternatively, you may add the missing import statements manually to the list at the top of the file:
.

.

import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
.

.

In the remainder of this book, all code examples will include any required library import statements.

30

An Example Compose Project

We have now finished writing our first composable function. Notice that, except for the font weight, all the other
properties are passed to the function when it is called (a function that calls another function is generally referred
to as the caller). This increases the flexibility, and therefore re-usability, of the DemoText composable and is a key
goal to keep in mind when writing composable functions.

4.5 Previewing the DemoText composable
At this point, the Preview panel will most likely be displaying a message which reads “No preview found”. The
reason for this is that our MainActivity.kt file does not contain any composable functions prefixed with the @
Preview annotation. Add a preview composable function for DemoText to the MainActivity.kt file as follows:
@Preview

@Composable

fun DemoTextPreview() {

 ComposeDemoTheme {

 DemoText(message = "Welcome to Android", fontSize = 12f)

 }

}

After adding the preview composable, the Preview panel should have detected the change and displayed the link
to build and refresh the preview rendering. Click the link and wait for the rebuild to complete, at which point
the DemoText composable should appear as shown in Figure 4-3:

Figure 4-3
Minor changes made to the code in the MainActivity.kt file such as changing values will be instantly reflected in
the preview without the need to build and refresh. For example, change the “Welcome to Android” text literal
to “Welcome to Compose” and note that the text in the Preview panel changes as you type. Similarly, increasing
the font size literal will instantly change the size of the text in the preview. This feature is referred to as Live Edit.

4.6 Adding the DemoSlider composable
The DemoSlider composable is a little more complicated than DemoText. It will need to be passed a variable
containing the current slider position and an event handler function or lambda to call when the slider is
moved by the user so that the new position can be stored and passed to the two Text composables. With these
requirements in mind, add the function as follows:
.

.

import androidx.compose.foundation.layout.*
import androidx.compose.material3.Slider
import androidx.compose.ui.unit.dp
.

.

@Composable
fun DemoSlider(sliderPosition: Float, onPositionChange: (Float) -> Unit) {
 Slider(

31

An Example Compose Project

 modifier = Modifier.padding(10.dp),
 valueRange = 20f..38f,
 value = sliderPosition,
 onValueChange = { onPositionChange(it) }
)
}

The DemoSlider declaration contains a single Slider composable which is, in turn, passed four parameters. The
first is a Modifier instance configured to add padding space around the slider. Modifier is a Kotlin class built into
Compose which allows a wide range of properties to be set on a composable within a single object. Modifiers can
also be created and customized in one composable before being passed to other composables where they can be
further modified before being applied.

The second value passed to the Slider is a range allowed for the slider value (in this case the slider is limited to
values between 20 and 38).

The next parameter sets the value of the slider to the position passed through by the caller. This ensures that each
time DemoSlider is recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call the function or lambda we will be passing to the
DemoSlider composable when we call it later. Each time the slider position changes, the call will be made and
passed the current value which we can access via the Kotlin it keyword. We can further simplify this by assigning
just the event handler parameter name (onPositionChange) and leaving the compiler to handle the passing of
the current value for us:

onValueChange = onPositionChange

4.7 Adding the DemoScreen composable
The next step in our project is to add the DemoScreen composable. This will contain a variable named
sliderPosition in which to store the current slider position and the implementation of the handlePositionChange
event handler to be passed to the DemoSlider. This lambda will be responsible for storing the current position
in the sliderPosition variable each time it is called with an updated value. Finally, DemoScreen will contain a
Column composable configured to display the DemoText, Spacer, DemoSlider and the second, as yet to be
added, Text composable in a vertical arrangement.

Start by adding the DemoScreen function as follows:
.

.

import androidx.compose.runtime.*
.

.

@Composable
fun DemoScreen(modifier: Modifier = Modifier) {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->
 sliderPosition = position
 }
}

32

An Example Compose Project

The sliderPosition variable declaration requires some explanation. As we will learn later, the Compose system
repeatedly and rapidly recomposes user interface layouts in response to data changes. The change of slider
position will, therefore, cause DemoScreen to be recomposed along with all of the composables it calls. Consider
if we had declared and initialized our sliderPosition variable as follows:
var sliderPosition = 20f

Suppose the user slides the slider to position 21. The handlePositionChange event handler is called and stores the
new value in the sliderPosition variable as follows:
val handlePositionChange = { position : Float ->

 sliderPosition = position

}

The Compose runtime system detects this data change and recomposes the user interface, including a call to the
DemoScreen function. This will, in turn, reinitialize the sliderposition target state causing the previous value of
21 to be lost. Declaring the sliderPosition variable in this way informs Compose that the current value needs to
be remembered during recompositions:

var sliderPosition by remember { mutableStateOf(20f) }

The only remaining work within the DemoScreen implementation is to add a Column containing the required
composable functions:
.

.

import androidx.compose.ui.Alignment
import androidx.compose.material3.MaterialTheme
.

.

@Composable

fun DemoScreen(modifier: Modifier = Modifier) {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->

 sliderPosition = position

 }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize()
) {

 DemoText(message = "Welcome to Compose", fontSize = sliderPosition)

 Spacer(modifier = Modifier.height(150.dp))

 DemoSlider(
 sliderPosition = sliderPosition,

33

An Example Compose Project

 onPositionChange = handlePositionChange
)

 Text(
 style = MaterialTheme.typography.headlineMedium,
 text = sliderPosition.toInt().toString() + "sp"
)
 }
}

Points to note regarding these changes may be summarized as follows:

• When DemoSlider is called, it is passed a reference to our handlePositionChange event handler as the
onPositionChange parameter.

• The Column composable accepts parameters that customize layout behavior. In this case, we have configured
the column to center its children both horizontally and vertically.

• A Modifier has been passed to the Spacer to place a 150dp vertical space between the DemoText and
DemoSlider components.

• The second Text composable is configured to use the headlineMedium style of the Material theme. In addition,
the sliderPosition value is converted from a Float to an integer so that only whole numbers are displayed and
then converted to a string value before being displayed to the user.

4.8 Previewing the DemoScreen composable
To confirm that the DemoScreen layout meets our expectations, we need to modify the DemoTextPreview
composable:
.

.

@Preview(showSystemUi = true)
@Composable

fun DemoTextPreview() {

 ComposeDemoTheme {

 DemoScreen()
 }

}

Note that we have enabled the showSystemUi property of the preview so that we will experience how the app will
look when running on an Android device.

After performing a preview rebuild and refresh, the user interface should appear as originally shown in Figure
3-1.

4.9 Adjusting preview settings
The showSystemUi preview property is only one of many preview configuration options provided by Android
Studio. In addition, properties are available to change configuration settings, such as the device type, screen
size, orientation, API level, and locale. To access these configuration settings, click on the Preview configuration
picker button located in the gutter to the left of the @Preview line in the code editor, as shown in Figure 4-4:

