Android Studio
Koala
Essentlals

/)))))/)
)
(((//

Java Edition -

llllllllll

Android Studio Koala
Essentials

Java Edition

Android Studio Koala Essentials — Java Edition
ISBN: 978-1-951442-96-5
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
-

https://www.payloadbooks.com

https://www.payloadbooks.com

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

13

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

14

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3
Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.
3.5 Modifying the Example Application

Once the project has been created, the main window will appear containing our AndroidSample project, as
illustrated in Figure 3-4 below:

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the menu to switch mode:

15

Creating an Example Android App in Android Studio

Figure 3-5
3.6 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other

16

Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
called main and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by
a U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-8). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

17

Creating an Example Android App in Android Studio

Figure 3-9

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-10

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-11:

18

Creating an Example Android App in Android Studio

Figure 3-11

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-13. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

Figure 3-14

This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
19

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:

button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This 118N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-15:

Figure 3-15

After selecting this option, the Extract Resource panel (Figure 3-16) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-16

20

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 Installing additional Android SDK packages
	2.5 Installing the Android SDK Command-line Tools
	2.5.1 Windows 8.1
	2.5.2 Windows 10
	2.5.3 Windows 11
	2.5.4 Linux
	2.5.5 macOS

	2.6 Android Studio memory management
	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Running the Emulator in a Separate Window
	4.7 Removing the Device Frame
	4.8 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Common Android Settings
	5.10 Creating a Resizable Emulator
	5.11 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. Introducing Gemini in Android Studio
	9.1 Introducing Gemini AI
	9.2 Enabling Gemini in Android Studio
	9.3 Gemini configuration
	9.4 Asking Gemini questions
	9.5 Question contexts
	9.6 Inline code completion
	9.7 Summary

	10. An Overview of the Android Architecture
	10.1 The Android Software Stack
	10.2 The Linux Kernel
	10.3 Hardware Abstraction Layer
	10.4 Android Runtime – ART
	10.5 Android Libraries
	10.5.1 C/C++ Libraries

	10.6 Application Framework
	10.7 Applications
	10.8 Summary

	11. The Anatomy of an Android App
	11.1 Android Activities
	11.2 Android Fragments
	11.3 Android Intents
	11.4 Broadcast Intents
	11.5 Broadcast Receivers
	11.6 Android Services
	11.7 Content Providers
	11.8 The Application Manifest
	11.9 Application Resources
	11.10 Application Context
	11.11 Summary

	12. An Overview of Android View Binding
	12.1 Find View by Id
	12.2 View Binding
	12.3 Converting the AndroidSample project
	12.4 Enabling View Binding
	12.5 Using View Binding
	12.6 Choosing an Option
	12.7 View Binding in the Book Examples
	12.8 Migrating a Project to View Binding
	12.9 Summary

	13. Understanding Android Application and Activity Lifecycles
	13.1 Android Applications and Resource Management
	13.2 Android Process States
	13.2.1 Foreground Process
	13.2.2 Visible Process
	13.2.3 Service Process
	13.2.4 Background Process
	13.2.5 Empty Process

	13.3 Inter-Process Dependencies
	13.4 The Activity Lifecycle
	13.5 The Activity Stack
	13.6 Activity States
	13.7 Configuration Changes
	13.8 Handling State Change
	13.9 Summary

	14. Handling Android Activity State Changes
	14.1 New vs. Old Lifecycle Techniques
	14.2 The Activity and Fragment Classes
	14.3 Dynamic State vs. Persistent State
	14.4 The Android Lifecycle Methods
	14.5 Lifetimes
	14.6 Foldable Devices and Multi-Resume
	14.7 Disabling Configuration Change Restarts
	14.8 Lifecycle Method Limitations
	14.9 Summary

	15. Android Activity State Changes by Example
	15.1 Creating the State Change Example Project
	15.2 Designing the User Interface
	15.3 Overriding the Activity Lifecycle Methods
	15.4 Filtering the Logcat Panel
	15.5 Running the Application
	15.6 Experimenting with the Activity
	15.7 Summary

	16. Saving and Restoring the State of an Android Activity
	16.1 Saving Dynamic State
	16.2 Default Saving of User Interface State
	16.3 The Bundle Class
	16.4 Saving the State
	16.5 Restoring the State
	16.6 Testing the Application
	16.7 Summary

	17. Understanding Android Views, View Groups and Layouts
	17.1 Designing for Different Android Devices
	17.2 Views and View Groups
	17.3 Android Layout Managers
	17.4 The View Hierarchy
	17.5 Creating User Interfaces
	17.6 Summary

	18. A Guide to the Android Studio Layout Editor Tool
	18.1 Basic vs. Empty Views Activity Templates
	18.2 The Android Studio Layout Editor
	18.3 Design Mode
	18.4 The Palette
	18.5 Design Mode and Layout Views
	18.6 Night Mode
	18.7 Code Mode
	18.8 Split Mode
	18.9 Setting Attributes
	18.10 Transforms
	18.11 Tools Visibility Toggles
	18.12 Converting Views
	18.13 Displaying Sample Data
	18.14 Creating a Custom Device Definition
	18.15 Changing the Current Device
	18.16 Layout Validation
	18.17 Summary

	19. A Guide to the Android ConstraintLayout
	19.1 How ConstraintLayout Works
	19.1.1 Constraints
	19.1.2 Margins
	19.1.3 Opposing Constraints
	19.1.4 Constraint Bias
	19.1.5 Chains
	19.1.6 Chain Styles

	19.2 Baseline Alignment
	19.3 Configuring Widget Dimensions
	19.4 Guideline Helper
	19.5 Group Helper
	19.6 Barrier Helper
	19.7 Flow Helper
	19.8 Ratios
	19.9 ConstraintLayout Advantages
	19.10 ConstraintLayout Availability
	19.11 Summary

	20. A Guide to Using ConstraintLayout in Android Studio
	20.1 Design and Layout Views
	20.2 Autoconnect Mode
	20.3 Inference Mode
	20.4 Manipulating Constraints Manually
	20.5 Adding Constraints in the Inspector
	20.6 Viewing Constraints in the Attributes Window
	20.7 Deleting Constraints
	20.8 Adjusting Constraint Bias
	20.9 Understanding ConstraintLayout Margins
	20.10 The Importance of Opposing Constraints and Bias
	20.11 Configuring Widget Dimensions
	20.12 Design Time Tools Positioning
	20.13 Adding Guidelines
	20.14 Adding Barriers
	20.15 Adding a Group
	20.16 Working with the Flow Helper
	20.17 Widget Group Alignment and Distribution
	20.18 Converting other Layouts to ConstraintLayout
	20.19 Summary

	21. Working with ConstraintLayout Chains and Ratios in Android Studio
	21.1 Creating a Chain
	21.2 Changing the Chain Style
	21.3 Spread Inside Chain Style
	21.4 Packed Chain Style
	21.5 Packed Chain Style with Bias
	21.6 Weighted Chain
	21.7 Working with Ratios
	21.8 Summary

	22. An Android Studio Layout Editor ConstraintLayout Tutorial
	22.1 An Android Studio Layout Editor Tool Example
	22.2 Preparing the Layout Editor Environment
	22.3 Adding the Widgets to the User Interface
	22.4 Adding the Constraints
	22.5 Testing the Layout
	22.6 Using the Layout Inspector
	22.7 Summary

	23. Manual XML Layout Design in Android Studio
	23.1 Manually Creating an XML Layout
	23.2 Manual XML vs. Visual Layout Design
	23.3 Summary

	24. Managing Constraints using Constraint Sets
	24.1 Java Code vs. XML Layout Files
	24.2 Creating Views
	24.3 View Attributes
	24.4 Constraint Sets
	24.4.1 Establishing Connections
	24.4.2 Applying Constraints to a Layout
	24.4.3 Parent Constraint Connections
	24.4.4 Sizing Constraints
	24.4.5 Constraint Bias
	24.4.6 Alignment Constraints
	24.4.7 Copying and Applying Constraint Sets
	24.4.8 ConstraintLayout Chains
	24.4.9 Guidelines
	24.4.10 Removing Constraints
	24.4.11 Scaling
	24.4.12 Rotation

	24.5 Summary

	25. An Android ConstraintSet Tutorial
	25.1 Creating the Example Project in Android Studio
	25.2 Adding Views to an Activity
	25.3 Setting View Attributes
	25.4 Creating View IDs
	25.5 Configuring the Constraint Set
	25.6 Adding the EditText View
	25.7 Converting Density Independent Pixels (dp) to Pixels (px)
	25.8 Summary

	26. A Guide to Using Apply Changes in Android Studio
	26.1 Introducing Apply Changes
	26.2 Understanding Apply Changes Options
	26.3 Using Apply Changes
	26.4 Configuring Apply Changes Fallback Settings
	26.5 An Apply Changes Tutorial
	26.6 Using Apply Code Changes
	26.7 Using Apply Changes and Restart Activity
	26.8 Using Run App
	26.9 Summary

	27. A Guide to Gradle Version Catalogs
	27.1 Library and Plugin Dependencies
	27.2 Project Gradle Build File
	27.3 Module Gradle Build Files
	27.4 Version Catalog File
	27.5 Adding Dependencies
	27.6 Library Updates
	27.7 Summary

	28. An Overview and Example of Android Event Handling
	28.1 Understanding Android Events
	28.2 Using the android:onClick Resource
	28.3 Event Listeners and Callback Methods
	28.4 An Event Handling Example
	28.5 Designing the User Interface
	28.6 The Event Listener and Callback Method
	28.7 Consuming Events
	28.8 Summary

	29. Android Touch and Multi-touch Event Handling
	29.1 Intercepting Touch Events
	29.2 The MotionEvent Object
	29.3 Understanding Touch Actions
	29.4 Handling Multiple Touches
	29.5 An Example Multi-Touch Application
	29.6 Designing the Activity User Interface
	29.7 Implementing the Touch Event Listener
	29.8 Running the Example Application
	29.9 Summary

	30. Detecting Common Gestures Using the Android Gesture Detector Class
	30.1 Implementing Common Gesture Detection
	30.2 Creating an Example Gesture Detection Project
	30.3 Implementing the Listener Class
	30.4 Creating the GestureDetector Instance
	30.5 Implementing the onTouchEvent() Method
	30.6 Testing the Application
	30.7 Summary

	31. Implementing Custom Gesture and Pinch Recognition on Android
	31.1 The Android Gesture Builder Application
	31.2 The GestureOverlayView Class
	31.3 Detecting Gestures
	31.4 Identifying Specific Gestures
	31.5 Installing and Running the Gesture Builder Application
	31.6 Creating a Gestures File
	31.7 Creating the Example Project
	31.8 Extracting the Gestures File from the SD Card
	31.9 Adding the Gestures File to the Project
	31.10 Designing the User Interface
	31.11 Loading the Gestures File
	31.12 Registering the Event Listener
	31.13 Implementing the onGesturePerformed Method
	31.14 Testing the Application
	31.15 Configuring the GestureOverlayView
	31.16 Intercepting Gestures
	31.17 Detecting Pinch Gestures
	31.18 A Pinch Gesture Example Project
	31.19 Summary

	32. An Introduction to Android Fragments
	32.1 What is a Fragment?
	32.2 Creating a Fragment
	32.3 Adding a Fragment to an Activity using the Layout XML File
	32.4 Adding and Managing Fragments in Code
	32.5 Handling Fragment Events
	32.6 Implementing Fragment Communication
	32.7 Summary

	33. Using Fragments in Android Studio - An Example
	33.1 About the Example Fragment Application
	33.2 Creating the Example Project
	33.3 Creating the First Fragment Layout
	33.4 Migrating a Fragment to View Binding
	33.5 Adding the Second Fragment
	33.6 Adding the Fragments to the Activity
	33.7 Making the Toolbar Fragment Talk to the Activity
	33.8 Making the Activity Talk to the Text Fragment
	33.9 Testing the Application
	33.10 Summary

	34. Modern Android App Architecture with Jetpack
	34.1 What is Android Jetpack?
	34.2 The “Old” Architecture
	34.3 Modern Android Architecture
	34.4 The ViewModel Component
	34.5 The LiveData Component
	34.6 ViewModel Saved State
	34.7 LiveData and Data Binding
	34.8 Android Lifecycles
	34.9 Repository Modules
	34.10 Summary

	35. An Android ViewModel Tutorial
	35.1 About the Project
	35.2 Creating the ViewModel Example Project
	35.3 Removing Unwanted Project Elements
	35.4 Designing the Fragment Layout
	35.5 Implementing the View Model
	35.6 Associating the Fragment with the View Model
	35.7 Modifying the Fragment
	35.8 Accessing the ViewModel Data
	35.9 Testing the Project
	35.10 Summary

	36. An Android Jetpack LiveData Tutorial
	36.1 LiveData - A Recap
	36.2 Adding LiveData to the ViewModel
	36.3 Implementing the Observer
	36.4 Summary

	37. An Overview of Android Jetpack Data Binding
	37.1 An Overview of Data Binding
	37.2 The Key Components of Data Binding
	37.2.1 The Project Build Configuration
	37.2.2 The Data Binding Layout File
	37.2.3 The Layout File Data Element
	37.2.4 The Binding Classes
	37.2.5 Data Binding Variable Configuration
	37.2.6 Binding Expressions (One-Way)
	37.2.7 Binding Expressions (Two-Way)
	37.2.8 Event and Listener Bindings

	37.3 Summary

	38. An Android Jetpack Data Binding Tutorial
	38.1 Removing the Redundant Code
	38.2 Enabling Data Binding
	38.3 Adding the Layout Element
	38.4 Adding the Data Element to Layout File
	38.5 Working with the Binding Class
	38.6 Assigning the ViewModel Instance to the Data Binding Variable
	38.7 Adding Binding Expressions
	38.8 Adding the Conversion Method
	38.9 Adding a Listener Binding
	38.10 Testing the App
	38.11 Summary

	39. An Android ViewModel Saved State Tutorial
	39.1 Understanding ViewModel State Saving
	39.2 Implementing ViewModel State Saving
	39.3 Saving and Restoring State
	39.4 Adding Saved State Support to the ViewModelDemo Project
	39.5 Summary

	40. Working with Android Lifecycle-Aware Components
	40.1 Lifecycle Awareness
	40.2 Lifecycle Owners
	40.3 Lifecycle Observers
	40.4 Lifecycle States and Events
	40.5 Summary

	41. An Android Jetpack Lifecycle Awareness Tutorial
	41.1 Creating the Example Lifecycle Project
	41.2 Creating a Lifecycle Observer
	41.3 Adding the Observer
	41.4 Testing the Observer
	41.5 Creating a Lifecycle Owner
	41.6 Testing the Custom Lifecycle Owner
	41.7 Summary

	42. An Overview of the Navigation Architecture Component
	42.1 Understanding Navigation
	42.2 Declaring a Navigation Host
	42.3 The Navigation Graph
	42.4 Accessing the Navigation Controller
	42.5 Triggering a Navigation Action
	42.6 Passing Arguments
	42.7 Summary

	43. An Android Jetpack Navigation Component Tutorial
	43.1 Creating the NavigationDemo Project
	43.2 Adding Navigation to the Build Configuration
	43.3 Creating the Navigation Graph Resource File
	43.4 Declaring a Navigation Host
	43.5 Adding Navigation Destinations
	43.6 Designing the Destination Fragment Layouts
	43.7 Adding an Action to the Navigation Graph
	43.8 Implement the OnFragmentInteractionListener
	43.9 Adding View Binding Support to the Destination Fragments
	43.10 Triggering the Action
	43.11 Passing Data Using Safeargs
	43.12 Summary

	44. An Introduction to MotionLayout
	44.1 An Overview of MotionLayout
	44.2 MotionLayout
	44.3 MotionScene
	44.4 Configuring ConstraintSets
	44.5 Custom Attributes
	44.6 Triggering an Animation
	44.7 Arc Motion
	44.8 Keyframes
	44.8.1 Attribute Keyframes
	44.8.2 Position Keyframes

	44.9 Time Linearity
	44.10 KeyTrigger
	44.11 Cycle and Time Cycle Keyframes
	44.12 Starting an Animation from Code
	44.13 Summary

	45. An Android MotionLayout Editor Tutorial
	45.1 Creating the MotionLayoutDemo Project
	45.2 ConstraintLayout to MotionLayout Conversion
	45.3 Configuring Start and End Constraints
	45.4 Previewing the MotionLayout Animation
	45.5 Adding an OnClick Gesture
	45.6 Adding an Attribute Keyframe to the Transition
	45.7 Adding a CustomAttribute to a Transition
	45.8 Adding Position Keyframes
	45.9 Summary

	46. A MotionLayout KeyCycle Tutorial
	46.1 An Overview of Cycle Keyframes
	46.2 Using the Cycle Editor
	46.3 Creating the KeyCycleDemo Project
	46.4 Configuring the Start and End Constraints
	46.5 Creating the Cycles
	46.6 Previewing the Animation
	46.7 Adding the KeyFrameSet to the MotionScene
	46.8 Summary

	47. Working with the Floating Action Button and Snackbar
	47.1 The Material Design
	47.2 The Design Library
	47.3 The Floating Action Button (FAB)
	47.4 The Snackbar
	47.5 Creating the Example Project
	47.6 Reviewing the Project
	47.7 Removing Navigation Features
	47.8 Changing the Floating Action Button
	47.9 Adding an Action to the Snackbar
	47.10 Summary

	48. Creating a Tabbed Interface using the TabLayout Component
	48.1 An Introduction to the ViewPager2
	48.2 An Overview of the TabLayout Component
	48.3 Creating the TabLayoutDemo Project
	48.4 Creating the First Fragment
	48.5 Duplicating the Fragments
	48.6 Adding the TabLayout and ViewPager2
	48.7 Creating the Pager Adapter
	48.8 Performing the Initialization Tasks
	48.9 Testing the Application
	48.10 Customizing the TabLayout
	48.11 Summary

	49. Working with the RecyclerView and CardView Widgets
	49.1 An Overview of the RecyclerView
	49.2 An Overview of the CardView
	49.3 Summary

	50. An Android RecyclerView and CardView Tutorial
	50.1 Creating the CardDemo Project
	50.2 Modifying the Basic Views Activity Project
	50.3 Designing the CardView Layout
	50.4 Adding the RecyclerView
	50.5 Adding the Image Files
	50.6 Creating the RecyclerView Adapter
	50.7 Initializing the RecyclerView Component
	50.8 Testing the Application
	50.9 Responding to Card Selections
	50.10 Summary

	51. A Layout Editor Sample Data Tutorial
	51.1 Adding Sample Data to a Project
	51.2 Using Custom Sample Data
	51.3 Summary

	52. Working with the AppBar and Collapsing Toolbar Layouts
	52.1 The Anatomy of an AppBar
	52.2 The Example Project
	52.3 Coordinating the RecyclerView and Toolbar
	52.4 Introducing the Collapsing Toolbar Layout
	52.5 Changing the Title and Scrim Color
	52.6 Summary

	53. An Overview of Android Services
	53.1 Intent Service
	53.2 Bound Service
	53.3 The Anatomy of a Service
	53.4 Controlling Destroyed Service Restart Options
	53.5 Declaring a Service in the Manifest File
	53.6 Starting a Service Running on System Startup
	53.7 Summary

	54. An Overview of Android Intents
	54.1 An Overview of Intents
	54.2 Explicit Intents
	54.3 Returning Data from an Activity
	54.4 Implicit Intents
	54.5 Using Intent Filters
	54.6 Automatic Link Verification
	54.7 Manually Enabling Links
	54.8 Checking Intent Availability
	54.9 Summary

	55. Android Explicit Intents – A Worked Example
	55.1 Creating the Explicit Intent Example Application
	55.2 Designing the User Interface Layout for MainActivity
	55.3 Creating the Second Activity Class
	55.4 Designing the User Interface Layout for SecondActivity
	55.5 Reviewing the Application Manifest File
	55.6 Creating the Intent
	55.7 Extracting Intent Data
	55.8 Launching SecondActivity as a Sub-Activity
	55.9 Returning Data from a Sub-Activity
	55.10 Testing the Application
	55.11 Summary

	56. Android Implicit Intents – A Worked Example
	56.1 Creating the Android Studio Implicit Intent Example Project
	56.2 Designing the User Interface
	56.3 Creating the Implicit Intent
	56.4 Adding a Second Matching Activity
	56.5 Adding the Web View to the UI
	56.6 Obtaining the Intent URL
	56.7 Modifying the MyWebView Project Manifest File
	56.8 Installing the MyWebView Package on a Device
	56.9 Testing the Application
	56.10 Manually Enabling the Link
	56.11 Automatic Link Verification
	56.12 Summary

	57. Android Broadcast Intents and Broadcast Receivers
	57.1 An Overview of Broadcast Intents
	57.2 An Overview of Broadcast Receivers
	57.3 Obtaining Results from a Broadcast
	57.4 Sticky Broadcast Intents
	57.5 The Broadcast Intent Example
	57.6 Creating the Example Application
	57.7 Creating and Sending the Broadcast Intent
	57.8 Creating the Broadcast Receiver
	57.9 Registering the Broadcast Receiver
	57.10 Testing the Broadcast Example
	57.11 Listening for System Broadcasts
	57.12 Summary

	58. Android Local Bound Services – A Worked Example
	58.1 Understanding Bound Services
	58.2 Bound Service Interaction Options
	58.3 A Local Bound Service Example
	58.4 Adding a Bound Service to the Project
	58.5 Implementing the Binder
	58.6 Binding the Client to the Service
	58.7 Completing the Example
	58.8 Testing the Application
	58.9 Summary

	59. Android Remote Bound Services – A Worked Example
	59.1 Client to Remote Service Communication
	59.2 Creating the Example Application
	59.3 Designing the User Interface
	59.4 Implementing the Remote Bound Service
	59.5 Configuring a Remote Service in the Manifest File
	59.6 Launching and Binding to the Remote Service
	59.7 Sending a Message to the Remote Service
	59.8 Summary

	60. An Overview of Java Threads, Handlers and Executors
	60.1 The Application Main Thread
	60.2 Thread Handlers
	60.3 A Threading Example
	60.4 Building the App
	60.5 Creating a New Thread
	60.6 Implementing a Thread Handler
	60.7 Passing a Message to the Handler
	60.8 Java Executor Concurrency
	60.9 Working with Runnable Tasks
	60.10 Shutting down an Executor Service
	60.11 Working with Callable Tasks and Futures
	60.12 Handling a Future Result
	60.13 Scheduling Tasks
	60.14 Summary

	61. Making Runtime Permission Requests in Android
	61.1 Understanding Normal and Dangerous Permissions
	61.2 Creating the Permissions Example Project
	61.3 Checking for a Permission
	61.4 Requesting Permission at Runtime
	61.5 Providing a Rationale for the Permission Request
	61.6 Testing the Permissions App
	61.7 Summary

	62. An Android Notifications Tutorial
	62.1 An Overview of Notifications
	62.2 Creating the NotifyDemo Project
	62.3 Designing the User Interface
	62.4 Creating the Second Activity
	62.5 Creating a Notification Channel
	62.6 Requesting Notification Permission
	62.7 Creating and Issuing a Notification
	62.8 Launching an Activity from a Notification
	62.9 Adding Actions to a Notification
	62.10 Bundled Notifications
	62.11 Summary

	63. An Android Direct Reply Notification Tutorial
	63.1 Creating the DirectReply Project
	63.2 Designing the User Interface
	63.3 Requesting Notification Permission
	63.4 Creating the Notification Channel
	63.5 Building the RemoteInput Object
	63.6 Creating the PendingIntent
	63.7 Creating the Reply Action
	63.8 Receiving Direct Reply Input
	63.9 Updating the Notification
	63.10 Summary

	64. Foldable Devices and Multi-Window Support
	64.1 Foldables and Multi-Window Support
	64.2 Using a Foldable Emulator
	64.3 Entering Multi-Window Mode
	64.4 Enabling and using Freeform Support
	64.5 Checking for Freeform Support
	64.6 Enabling Multi-Window Support in an App
	64.7 Specifying Multi-Window Attributes
	64.8 Detecting Multi-Window Mode in an Activity
	64.9 Receiving Multi-Window Notifications
	64.10 Launching an Activity in Multi-Window Mode
	64.11 Configuring Freeform Activity Size and Position
	64.12 Summary

	65. An Overview of Android SQLite Databases
	65.1 Understanding Database Tables
	65.2 Introducing Database Schema
	65.3 Columns and Data Types
	65.4 Database Rows
	65.5 Introducing Primary Keys
	65.6 What is SQLite?
	65.7 Structured Query Language (SQL)
	65.8 Trying SQLite on an Android Virtual Device (AVD)
	65.9 Android SQLite Classes
	65.9.1 Cursor
	65.9.2 SQLiteDatabase
	65.9.3 SQLiteOpenHelper
	65.9.4 ContentValues

	65.10 The Android Room Persistence Library
	65.11 Summary

	66. An Android SQLite Database Tutorial
	66.1 About the Database Example
	66.2 Creating the SQLDemo Project
	66.3 Designing the User interface
	66.4 Creating the Data Model
	66.5 Implementing the Data Handler
	66.6 The Add Handler Method
	66.7 The Query Handler Method
	66.8 The Delete Handler Method
	66.9 Implementing the Activity Event Methods
	66.10 Testing the Application
	66.11 Summary

	67. Understanding Android Content Providers
	67.1 What is a Content Provider?
	67.2 The Content Provider
	67.2.1 onCreate()
	67.2.2 query()
	67.2.3 insert()
	67.2.4 update()
	67.2.5 delete()
	67.2.6 getType()

	67.3 The Content URI
	67.4 The Content Resolver
	67.5 The <provider> Manifest Element
	67.6 Summary

	68. An Android Content Provider Tutorial
	68.1 Copying the SQLDemo Project
	68.2 Adding the Content Provider Package
	68.3 Creating the Content Provider Class
	68.4 Constructing the Authority and Content URI
	68.5 Implementing URI Matching in the Content Provider
	68.6 Implementing the Content Provider onCreate() Method
	68.7 Implementing the Content Provider insert() Method
	68.8 Implementing the Content Provider query() Method
	68.9 Implementing the Content Provider update() Method
	68.10 Implementing the Content Provider delete() Method
	68.11 Declaring the Content Provider in the Manifest File
	68.12 Modifying the Database Handler
	68.13 Summary

	69. An Android Content Provider Client Tutorial
	69.1 Creating the SQLDemoClient Project
	69.2 Designing the User interface
	69.3 Accessing the Content Provider
	69.4 Adding the Query Permission
	69.5 Testing the Project
	69.6 Summary

	70. The Android Room Persistence Library
	70.1 Revisiting Modern App Architecture
	70.2 Key Elements of Room Database Persistence
	70.2.1 Repository
	70.2.2 Room Database
	70.2.3 Data Access Object (DAO)
	70.2.4 Entities
	70.2.5 SQLite Database

	70.3 Understanding Entities
	70.4 Data Access Objects
	70.5 The Room Database
	70.6 The Repository
	70.7 In-Memory Databases
	70.8 Database Inspector
	70.9 Summary

	71. An Android TableLayout and TableRow Tutorial
	71.1 The TableLayout and TableRow Layout Views
	71.2 Creating the Room Database Project
	71.3 Converting to a LinearLayout
	71.4 Adding the TableLayout to the User Interface
	71.5 Configuring the TableRows
	71.6 Adding the Button Bar to the Layout
	71.7 Adding the RecyclerView
	71.8 Adjusting the Layout Margins
	71.9 Summary

	72. An Android Room Database and Repository Tutorial
	72.1 About the RoomDemo Project
	72.2 Modifying the Build Configuration
	72.3 Building the Entity
	72.4 Creating the Data Access Object
	72.5 Adding the Room Database
	72.6 Adding the Repository
	72.7 Adding the ViewModel
	72.8 Creating the Product Item Layout
	72.9 Adding the RecyclerView Adapter
	72.10 Preparing the Main Activity
	72.11 Adding the Button Listeners
	72.12 Adding LiveData Observers
	72.13 Initializing the RecyclerView
	72.14 Testing the RoomDemo App
	72.15 Using the Database Inspector
	72.16 Summary

	73. Creating, Testing, and Uploading an Android App Bundle
	73.1 The Release Preparation Process
	73.2 Android App Bundles
	73.3 Register for a Google Play Developer Console Account
	73.4 Configuring the App in the Console
	73.5 Enabling Google Play App Signing
	73.6 Creating a Keystore File
	73.7 Creating the Android App Bundle
	73.8 Generating Test APK Files
	73.9 Uploading the App Bundle to the Google Play Developer Console
	73.10 Exploring the App Bundle
	73.11 Managing Testers
	73.12 Rolling the App Out for Testing
	73.13 Uploading New App Bundle Revisions
	73.14 Analyzing the App Bundle File
	73.15 Summary

	74. An Overview of Android In-App Billing
	74.1 Preparing a Project for In-App Purchasing
	74.2 Creating In-App Products and Subscriptions
	74.3 Billing Client Initialization
	74.4 Connecting to the Google Play Billing Library
	74.5 Querying Available Products
	74.6 Starting the Purchase Process
	74.7 Completing the Purchase
	74.8 Querying Previous Purchases
	74.9 Summary

	75. An Android In-App Purchasing Tutorial
	75.1 About the In-App Purchasing Example Project
	75.2 Creating the InAppPurchase Project
	75.3 Adding Libraries to the Project
	75.4 Designing the User Interface
	75.5 Adding the App to the Google Play Store
	75.6 Creating an In-App Product
	75.7 Enabling License Testers
	75.8 Initializing the Billing Client
	75.9 Querying the Product
	75.10 Launching the Purchase Flow
	75.11 Handling Purchase Updates
	75.12 Consuming the Product
	75.13 Restoring a Previous Purchase
	75.14 Testing the App
	75.15 Troubleshooting
	75.16 Summary

	76. Creating and Managing Overflow Menus on Android
	76.1 The Overflow Menu
	76.2 Creating an Overflow Menu
	76.3 Displaying an Overflow Menu
	76.4 Responding to Menu Item Selections
	76.5 Creating Checkable Item Groups
	76.6 Menus and the Android Studio Menu Editor
	76.7 Creating the Example Project
	76.8 Designing the Menu
	76.9 Modifying the onOptionsItemSelected() Method
	76.10 Testing the Application
	76.11 Summary

	77. An Android Studio Primary/Detail Flow Tutorial
	77.1 The Primary/Detail Flow
	77.2 Creating a Primary/Detail Flow Activity
	77.3 Adding the Primary/Detail Flow Activity
	77.4 Modifying the Primary/Detail Flow Template
	77.5 Changing the Content Model
	77.6 Changing the Detail Pane
	77.7 Modifying the ItemDetailFragment Class
	77.8 Modifying the ItemListFragment Class
	77.9 Adding Manifest Permissions
	77.10 Running the Application
	77.11 Summary

	78. An Android Biometric Authentication Tutorial
	78.1 An Overview of Biometric Authentication
	78.2 Creating the Biometric Authentication Project
	78.3 Configuring Device Fingerprint Authentication
	78.4 Adding the Biometric Permission to the Manifest File
	78.5 Designing the User Interface
	78.6 Adding a Toast Convenience Method
	78.7 Checking the Security Settings
	78.8 Configuring the Authentication Callbacks
	78.9 Adding the CancellationSignal
	78.10 Starting the Biometric Prompt
	78.11 Testing the Project
	78.12 Summary

	79. Accessing Cloud Storage using the Android Storage Access Framework
	79.1 The Storage Access Framework
	79.2 Working with the Storage Access Framework
	79.3 Filtering Picker File Listings
	79.4 Handling Intent Results
	79.5 Reading the Content of a File
	79.6 Writing Content to a File
	79.7 Deleting a File
	79.8 Gaining Persistent Access to a File
	79.9 Summary

	80. An Android Storage Access Framework Example
	80.1 About the Storage Access Framework Example
	80.2 Creating the Storage Access Framework Example
	80.3 Designing the User Interface
	80.4 Adding the Activity Launchers
	80.5 Creating a New Storage File
	80.6 Saving to a Storage File
	80.7 Opening and Reading a Storage File
	80.8 Testing the Storage Access Application
	80.9 Summary

	81. Video Playback on Android using the VideoView and MediaController Classes
	81.1 Introducing the Android VideoView Class
	81.2 Introducing the Android MediaController Class
	81.3 Creating the Video Playback Example
	81.4 Designing the VideoPlayer Layout
	81.5 Downloading the Video File
	81.6 Configuring the VideoView
	81.7 Adding the MediaController to the Video View
	81.8 Setting up the onPreparedListener
	81.9 Summary

	82. Android Picture-in-Picture Mode
	82.1 Picture-in-Picture Features
	82.2 Enabling Picture-in-Picture Mode
	82.3 Configuring Picture-in-Picture Parameters
	82.4 Entering Picture-in-Picture Mode
	82.5 Detecting Picture-in-Picture Mode Changes
	82.6 Adding Picture-in-Picture Actions
	82.7 Summary

	83. An Android Picture-in-Picture Tutorial
	83.1 Adding Picture-in-Picture Support to the Manifest
	83.2 Adding a Picture-in-Picture Button
	83.3 Entering Picture-in-Picture Mode
	83.4 Detecting Picture-in-Picture Mode Changes
	83.5 Adding a Broadcast Receiver
	83.6 Adding the PiP Action
	83.7 Testing the Picture-in-Picture Action
	83.8 Summary

	84. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	84.1 Playing Audio
	84.2 Recording Audio and Video using the MediaRecorder Class
	84.3 About the Example Project
	84.4 Creating the AudioApp Project
	84.5 Designing the User Interface
	84.6 Checking for Microphone Availability
	84.7 Initializing the Activity
	84.8 Implementing the recordAudio() Method
	84.9 Implementing the stopAudio() Method
	84.10 Implementing the playAudio() method
	84.11 Configuring and Requesting Permissions
	84.12 Testing the Application
	84.13 Summary

	85. Working with the Google Maps Android API in Android Studio
	85.1 The Elements of the Google Maps Android API
	85.2 Creating the Google Maps Project
	85.3 Creating a Google Cloud Billing Account
	85.4 Creating a New Google Cloud Project
	85.5 Enabling the Google Maps SDK
	85.6 Generating a Google Maps API Key
	85.7 Adding the API Key to the Android Studio Project
	85.8 Testing the Application
	85.9 Understanding Geocoding and Reverse Geocoding
	85.10 Adding a Map to an Application
	85.11 Requesting Current Location Permission
	85.12 Displaying the User’s Current Location
	85.13 Changing the Map Type
	85.14 Displaying Map Controls to the User
	85.15 Handling Map Gesture Interaction
	85.15.1 Map Zooming Gestures
	85.15.2 Map Scrolling/Panning Gestures
	85.15.3 Map Tilt Gestures
	85.15.4 Map Rotation Gestures

	85.16 Creating Map Markers
	85.17 Controlling the Map Camera
	85.18 Summary

	86. Printing with the Android Printing Framework
	86.1 The Android Printing Architecture
	86.2 The Print Service Plugins
	86.3 Google Cloud Print
	86.4 Printing to Google Drive
	86.5 Save as PDF
	86.6 Printing from Android Devices
	86.7 Options for Building Print Support into Android Apps
	86.7.1 Image Printing
	86.7.2 Creating and Printing HTML Content
	86.7.3 Printing a Web Page
	86.7.4 Printing a Custom Document

	86.8 Summary

	87. An Android HTML and Web Content Printing Example
	87.1 Creating the HTML Printing Example Application
	87.2 Printing Dynamic HTML Content
	87.3 Creating the Web Page Printing Example
	87.4 Removing the Floating Action Button
	87.5 Removing Navigation Features
	87.6 Designing the User Interface Layout
	87.7 Accessing the WebView from the Main Activity
	87.8 Loading the Web Page into the WebView
	87.9 Adding the Print Menu Option
	87.10 Summary

	88. A Guide to Android Custom Document Printing
	88.1 An Overview of Android Custom Document Printing
	88.1.1 Custom Print Adapters

	88.2 Preparing the Custom Document Printing Project
	88.3 Designing the UI
	88.4 Creating the Custom Print Adapter
	88.5 Implementing the onLayout() Callback Method
	88.6 Implementing the onWrite() Callback Method
	88.7 Checking a Page is in Range
	88.8 Drawing the Content on the Page Canvas
	88.9 Starting the Print Job
	88.10 Testing the Application
	88.11 Summary

	89. An Introduction to Android App Links
	89.1 An Overview of Android App Links
	89.2 App Link Intent Filters
	89.3 Handling App Link Intents
	89.4 Associating the App with a Website
	89.5 Summary

	90. An Android Studio App Links Tutorial
	90.1 About the Example App
	90.2 The Database Schema
	90.3 Loading and Running the Project
	90.4 Adding the URL Mapping
	90.5 Adding the Intent Filter
	90.6 Adding Intent Handling Code
	90.7 Testing the App
	90.8 Creating the Digital Asset Links File
	90.9 Testing the App Link
	90.10 Summary

	91. Working with Material Design 3 Theming
	91.1 Material Design 2 vs. Material Design 3
	91.2 Understanding Material Design Theming
	91.3 Material Design 3 Theming
	91.4 Building a custom theme
	91.5 Summary

	92. A Material Design 3 Theming and Dynamic Color Tutorial
	92.1 Creating the ThemeDemo Project
	92.2 Designing the User Interface
	92.3 Building a new theme
	92.4 Adding the Theme to the Project
	92.5 Enabling Dynamic Color Support
	92.6 Summary

	93. An Overview of Gradle in Android Studio
	93.1 An Overview of Gradle
	93.2 Gradle and Android Studio
	93.2.1 Sensible Defaults
	93.2.2 Dependencies
	93.2.3 Build Variants
	93.2.4 Manifest Entries
	93.2.5 APK Signing
	93.2.6 ProGuard Support

	93.3 The Property and Settings Gradle Build File
	93.4 The Top-level Gradle Build File
	93.5 Module Level Gradle Build Files
	93.6 Configuring Signing Settings in the Build File
	93.7 Running Gradle Tasks from the Command Line
	93.8 Summary

	Index

