Android Studio Koala Essentials

Kotlin Edition

Android Studio Koala Essentials

Kotlin Edition

Android Studio Koala Essentials - Kotlin Edition

ISBN: 978-1-951442-95-8

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers any warranties or representation, express or implied, with regard to the accuracy of information contained in this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

https://www.payloadbooks.com

3. Creating an Example Android App in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now is a good time to validate that all required development packages are installed and functioning correctly. The best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover creating an Android application project using Android Studio. Once the project has been created, a later chapter will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key aspects of Android app development without overwhelming the beginner by introducing too many concepts, such as the recommended app architecture and Android architecture components, at once. When following the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio environment. Begin, therefore, by launching Android Studio so that the "Welcome to Android Studio" screen appears as illustrated in Figure 3-1:

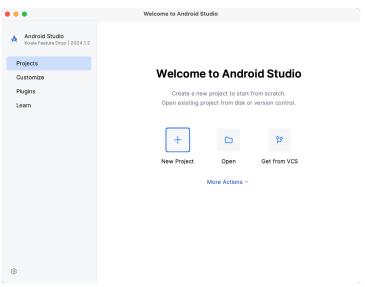


Figure 3-1

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project, click on the *New Project* option to display the first screen of the *New Project* wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is available when developing Android applications, many of which will be covered extensively in later chapters. For this example, however, select the *Phone and Tablet* option from the Templates panel, followed by the option to create an *Empty Views Activity*. The Empty Views Activity option creates a template user interface consisting of a single TextView object.

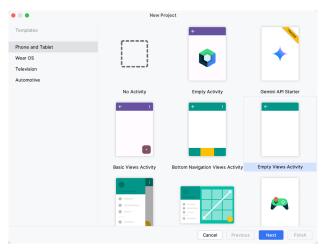


Figure 3-2

With the Empty Views Activity option selected, click *Next* to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the *Name* field to *AndroidSample*. The application name is the name by which the application will be referenced and identified within Android Studio and is also the name that would be used if the completed application were to go on sale in the Google Play store.

The *Package name* uniquely identifies the application within the Android application ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your domain name followed by the application's name. For example, if your domain is *www.mycompany.com*, and the application has been named *AndroidSample*, then the package name might be specified as follows:

```
com.mycompany.androidsample
```

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may use *example.com* for testing, though this will need to be changed before an application can be published:

```
com.example.androidsample
```

The *Save location* setting will default to a location in the folder named *AndroidStudioProjects* located in your home directory and may be changed by clicking on the folder icon to the right of the text field containing the current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects created in this book unless a necessary feature is only available in a more recent version. The objective here is to

build an app using the latest Android SDK while retaining compatibility with devices running older versions of Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDK setting will outline the percentage of Android devices currently in use on which the app will run. Click on the *Help me choose* button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

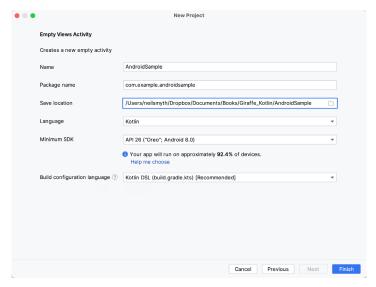


Figure 3-3

Finally, change the *Language* menu to *Kotlin* and select *Kotlin DSL* (build.gradle.kts) as the build configuration language before clicking *Finish* to create the project.

3.5 Modifying the Example Application

Once the project has been created, the main window will appear containing our AndroidSample project, as illustrated in Figure 3-4 below:

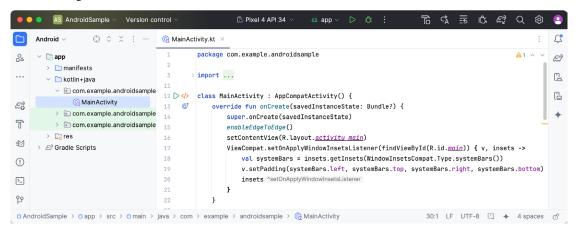


Figure 3-4

The newly created project and references to associated files are listed in the *Project* tool window on the left side of the main project window. The Project tool window has several modes in which information can be displayed. By default, this panel should be in *Android* mode. This setting is controlled by the menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the menu to switch mode:

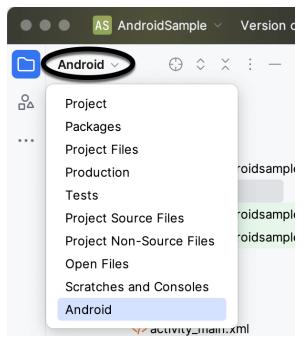


Figure 3-5

3.6 Modifying the User Interface

The user interface design for our activity is stored in a file named *activity_main.xml* which, in turn, is located under *app -> res -> layout* in the Project tool window file hierarchy. Once located in the Project tool window, double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel of the Android Studio main window:

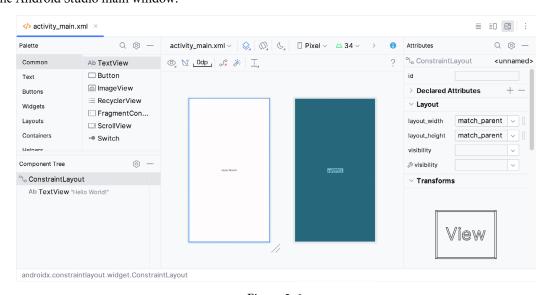


Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to *Pixel* in the above figure) which is reflected in the visual representation of the device within the Layout Editor panel. A range of other

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change the orientation of the device representation between landscape and portrait, use the drop-down menu showing the icon.

As we can see in the device screen, the content layout already includes a label that displays a "Hello World!" message. Running down the left-hand side of the panel is a palette containing different categories of user interface components that may be used to construct a user interface, such as buttons, labels, and text fields. However, it should be noted that not all user interface components are visible to the user. One such category consists of *layouts*. Android supports a variety of layouts that provide different levels of control over how visual user interface components are positioned and managed on the screen. Though it is difficult to tell from looking at the visual representation of the user interface, the current design has been created using a ConstraintLayout. This can be confirmed by reviewing the information in the *Component Tree* panel, which, by default, is located in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

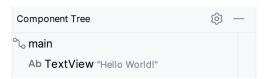


Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent called *main* and a TextView child object.

Before proceeding, check that the Layout Editor's Autoconnect mode is enabled. This means that as components are added to the layout, the Layout Editor will automatically add constraints to ensure the components are correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-8). If necessary, reenable Autoconnect mode by clicking on this button.

Figure 3-8

The next step in modifying the application is to add some additional components to the layout, the first of which will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component categories. The right-hand column lists the components contained within the currently selected category. In Figure 3-9, for example, the Button view is currently selected within the Buttons category:

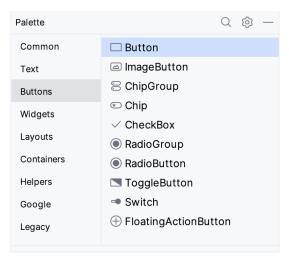


Figure 3-9

Click and drag the *Button* object from the Buttons list and drop it in the horizontal center of the user interface design so that it is positioned beneath the existing TextView widget:

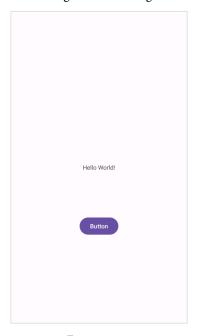


Figure 3-10

The next step is to change the text currently displayed by the Button component. The panel located to the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected component in the layout. Within this panel, locate the *text* property in the Common Attributes section and change the current value from "Button" to "Convert", as shown in Figure 3-11:

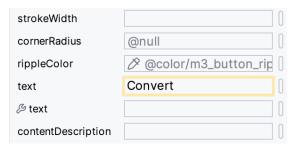


Figure 3-11

The second text property with a wrench next to it allows a text property to be set, which only appears within the Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated in Figure 3-13. This warning indicates potential problems with the layout. For details on any problems, click on the button:

Figure 3-13

When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

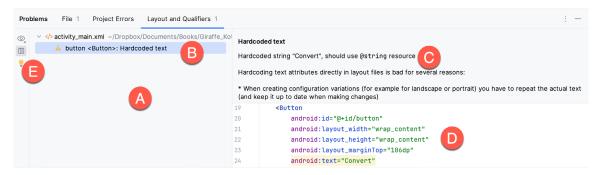


Figure 3-14

This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:

```
button <Button>: Hardcoded text
```

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the problem (C). In this case, the explanation reads as follows:

```
Hardcoded string "Convert", should use @string resource
```

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the project ("I18N" comes from the fact that the word "internationalization" begins with an "I", ends with an "N" and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be stored as *resources* wherever possible when developing Android applications. Doing so enables changes to the appearance of the application to be made by modifying resource files instead of changing the application source code. This can be especially valuable when translating a user interface to a different spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who will then perform the translation work and return the translated file for inclusion in the application. This enables multiple languages to be targeted without the necessity for any source code changes to be made. In this instance, we are going to create a new resource named *convert_string* and assign to it the string "Convert".

Begin by clicking on the Show Quick Fixes button (E) and selecting the *Extract string resource* option from the menu, as shown in Figure 3-15:

Figure 3-15

After selecting this option, the *Extract Resource* panel (Figure 3-16) will appear. Within this panel, change the resource name field to *convert_string* and leave the resource value set to *Convert* before clicking on the OK button:

• • •	Extract Resource
Resource name:	convert_string
Resource value:	Convert
Source set:	main src/main/res ▼
File name:	strings.xml 🔻
Create the resour	ce in directories:
$+$ $ \boxtimes$ \Box	
✓ values	
values-night	
	Cancel OK

Figure 3-16