The Art of

Functional
Programming

with examples in OCaml, Haskell, and Java

Minh Quang Tran, PhD

The Art of Functional Programming

Copyright © 2024 Minh Quang Tran
All rights reserved.

About the author:

Minh Quang Tran has over 20 years of experience
studying software development and working in the
software industry. He has worked in various tech
startups and large software companies in Europe. He
holds a Bachelor of Computer Science from
Furtwangen University, Germany, an M.Sc. in
Computer Science from McMaster University, Canada,
and a Ph.D. in Computer Science from the Technical
University of Berlin, Germany. His interest lies in
understanding and mastering the fundamentals and
principles that transcend programming languages,
frameworks, and tools.

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

multi-argument function and decide how to arrange the arguments.
Currying and partial application are at the core of functional pro-
gramming languages. Non-functional programming languages like
C or Java do not support these techniques.

3.4 General Computation Methods as Higher-Order
Functions

So far, we’ve mainly defined functions whose arguments or return
values are numbers, boolean values, or strings. But recall that func-
tions are first-class citizens in functional programming languages.
Thanks to this, we can easily define a function that accepts other
functions as arguments or returns another function as a result. Such
a function is called a higher-order function. High-order functions
are powerful because they enable us to formulate computation pat-
terns that work with different functions.

3.4.1 Summation as a higher-order function

A good way to appreciate the power of functions operating on other
functions is to look at summation in mathematics. For instance,
mathematicians often study summations, sums of a sequence of
numbers, like the sum of all natural numbers from 1to n:

1424+34+...+n
Or the sum of squares of natural numbers from 1to n:

1249224324+ ... 4+n2

The Art of Functional Programming 99

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

If we look at these sums of sequences, we can notice that summa-
tion can be defined for any function capable of producing the terms
forthe sum. Of course, mathematicians realized this a long time ago.
They invented the summation symbol > (read “sigma”) to express
the sum of elements represented by a function f within an interval,

[m, n].

S f@) = f(m)+ f(m+1)+ ...+ f(n)

i=m
The following diagram illustrates how the concept of summation is
a generalization of more concrete sum concepts:

A
Concept of General
summation

A

Concept of sum of

Concept of sum of
squares of naturals Concrete

naturals

Figure 35: Mathematical summation as generalized concept

What makes >~ so powerfulis that it allows mathematicians to think
about summation as a concept itself rather than as just the sum of
a particular function.

Functional programming readily provides us with a similar power.
Let’s formulate a higher-order function sum in OCaml that behaves
similar to the sigma notation > | above. In particular, itaccepts three
arguments - a function termthat mapseach index i to aterm of the

The Art of Functional Programming 100

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

sum, the lower index bound m, and the upper index bound n. For
simplicity, we only consider term functions that produce terms of
type integers.

(x OCaml x)

let rec sum term m n = if m > n then 0 else
term m + sum term (m + 1) n

We can easily formulate afunction, sum_integers,thatsumsupall
integersin a given range with sum. In particular, we pass the identity
function to sum.

(x OCaml x)
let sum_integers m n = sum (fun i -> i) m n

sum_integers 1 3
(* Result: 6 x)

Likewise, the function that calculates the sum of squares of integers
within an interval is a particular case of sum.
(x OCaml x)

let sum_integer_squares m n = sum (fun i -> 1
* i) m n

sum_integer_squares 1 3
(* Result: 14 x)

What is the difference between the mathematical sigma > and our
OCaml sum function?

> represents a mathematical concept of summation. However,
our sum function encapsulates a computation or algorithm that
describes how to actually calculate summation. The following

The Art of Functional Programming 101

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

figure illustrates this:

A
Compute summation
General
(sum)
A
Compute sum of Compute sum of
integers squares of integers
(sum_integers) (sum_integer squares) Concrete

Figure 36: Higher-order function as general method of

computation

Although sum_integers and sum_integer_squares work as ex-
pected, their definitions look quite cumbersome. For instance, let’s
look at sum_1integers one more time:

(x OCaml x)
let sum_integers m n = sum (fun i -> i) m n;;

The definition is verbose because the lower and upper bound, mand
n, are passed unchanged into sum. Can we get rid of these argu-
ments?

The answer is yes, we can.

(x OCaml x)
let sum_integers = sum (fun i -> 1)

This shorter version works because sum (fun i -> 1) isapartial
function application whose result is a function. We can think of this

The Art of Functional Programming 102

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

function as a specialized version of sum where we fix the term func-
tion to become (fun i -> 1). Moreover, since the function ac-
cepts two arguments, it precisely defines sum_integers.

Similarly, sum_squares can be defined more clearly as follows:

(x OCaml %)
let sum_squares = sum (fun i -> i * 1)

3.4.2 Accumulation as a higher-order function

We can go even further and treat summation as a particular case of
accumulation! To illustrate, let’s start by observing that mathemati-
cians also think about the products of sequences of numbers. For
instance, the factorial of n, denoted by n! is defined as follows:

nl=1x2x3x%x..xn
Or the product of squares of natural numbers from 1to n:
12 x 22 x 32 x ... x n?

Similar to sum discussed previously, we can also define a higher-
order function product that captures the concept of the product
for any function.

(x OCaml x)

let rec product term m n = if m > n then 1
else term m * product term (m + 1) nj;

We use product to define a function product_integers that cal-
culates the product of integers within an interval.

The Art of Functional Programming 103

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

(x OCaml x)
let product_integers = product (fun x -> x)

product_integers 1 3
(*x Result: 6 x)

Likewise, we can reuse product to formulate a function that calcu-
lates the product of the square of integers within an interval.

(x OCaml x)
let product_integer_squares = product (fun x
-> X * X)

product_integer_squares 1 3
(* Result: 36 x)

So far, so good. Yet, sum and product share a common pattern -
both accumulate terms produced by a given function within an in-
terval. This means we can factor out the common pattern into an
even more general higher-order function and call it accumulate. It
takes a binary function, combiner, that combines the current term
with the previous accumulation. It also accepts an init argument
that represents an initial value. The last remaining arguments are a
termfunction and a range, [m,n].

(x OCaml x)

let rec accumulate combiner init term m n =

if m > n then init

else combiner (term m) (accumulate
combiner init term (m + 1) n)

Next, we can formulate sum and product as a particular case of

accumulate.

The Art of Functional Programming 104

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

let sum = accumulate (+) 0
let product = accumulate (*) 1

sum (fun x -> x) 1 4

product (fun x -> x) 1 4

3.4.3 Climbing up the abstraction hierarchy

Let’s stop and reflect on what we’ve done so far. We started out with
concrete computations, such as the sum of natural numbers, and
the sum of squares of natural numbers. Next, we abstracted them
into a more general computation summation. However, we soon
realized summation is just a particular case of an even more gen-
eral computation accumulation. This led us to capture accumula-
tion as a higher-order function, accumulate. All this was possible
because functions are first-class citizens in functional programming
languages and hence can accept other functions as arguments.

We can view this remarkable process as climbing up the abstraction
hierarchy. The higher we move up, the more general methods of
computation we obtain. The following diagram depicts this:

The Art of Functional Programming 105

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

Compute
accumulation
(accumulate) General

Compute
summation
(sum)

Compute
product
(product)

integers of integers integers
(sum_integers) sum_integer_squares product_integers)

integers

(product_integer squares) | |Concrete

Compute sum of Compute sum of squares Compute product of Compute product of squares of
() (

Figure 37: Climbing up the abstraction hierarchy

A general method of computation like accumulate has many
advantages. First, it avoids code duplication and enables code
reusability. In our example, we can reuse accumulate to for-
mulate all the functions beneath it in the diagram, such as sum,
prod, sum_integers, prod_integers, and many others. More
importantly, such a general computation method allows us to think
about programming on a higher abstraction level. This significantly
reduces mental effort when solving programming problems. To
see this, let’s compare two ways of solving the problem of im-
plementing a function, sum_integer_cubes n, that computes
13423 + ...nd.

Low-level thinking

We write a recursive function that returns 0 in case n < 0. Other-
wise, we add the cube of n to the recursively calculated result for
n - 1.

(x OCaml x)
let rec sum_integer_cubes n = if n <= 0 then 0

The Art of Functional Programming 106

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

else n *x n * n + sum_integer_cubes (n -
1)

High-level thinking

We use the accumulate computation pattern where the combiner
is the addition operator +, the term function raises an argument to
its cube. Moreover, the initial value, init, is 0, whereas the range is

[1, n].

let sum_integer_cubes = accumulate (+) 0 (fun
X => X * X *x x) 1

Both approaches arrive at a solution for the problem but the
thought process is very different. In the first solution, we are
concerned about low-level implementation details, such as han-
dling the different recursion cases. In second solution, we pick
accumulate from a toolbox and focus primarily on how to con-
figure the parameters of accumulate to solve the problem. How
accumulate is implemented is irrelevant to us at this level of
abstraction.

3.5 Recursive Functions
3.5.1 Where are the for/while loops?

If you are new to functional programming, you might be wondering,
“How can I make a loop in a functional programming language?” As-
sume you want to calculate thesum, 1 + 2 + 3 + ... + n,for

The Art of Functional Programming 107

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

a given n natural number. In a non-functional programming lan-
guage, we typically use a for or while loop:

// Java
int sum (int n) {
int s = 0;
for (int i = 1; i <= nj i++) {
S = s + 1;
}

return s;

}

This way of programming is inherently imperative because we ex-
plicitly specify the steps required to update s via variable assign-
ment within a loop.

In the functional paradigm, however, we express sum as an expres-
sion. In particular, we can have a mathematical definition of sum as
follows:

0, forn=0
sum(n) =
n+ sum(n—1), forn >0

We can translate this definition directly into a recursive function -
a function that calls itself. Such a function is marked with the rec
keyword in OCaml.

(x OCaml x)

let rec sum n = if n <= 0 then 0 else n + sum
(n-1)

sum 3
(x Result: 6 %)

The Art of Functional Programming 108

3 BUILDING ABSTRACTIONS WITH FUNCTIONS

As you delve into functional programming, your thinking will soon
shift from “How can | use a loop to compute this?” to “What is the re-
cursive structure of the computation I’'m trying to formulate?”. The
good news is, many computations in programming have inherently
recursive structures, which makes them ideal to be formulated as
recursive functions.

As powerful as recursion is, it is associated with an infamous prob-
lem - stack overflow. In our case, if we apply sum to a large number,
the function execution might eventually reach the stack limit. If we
calculate sum 1000000, we’'ll see a stack overflow exception.

let rec sum n = if n <= 0 then 0 else n + sum
(n-1)

sum 1000000

Before discussing solutions for this issue, let’s review why the stack
overflow problem occurs in the first place. The following visualizes
the process evolved from computing sum 5.

sum 5

5 + sum 4

5 + (4 + sum 3)

5+ (4 + (3 + sum 2))

5+ (4 + (3 + (2 + sum 1)))
5+ (4 + (3 + (2+ (1 + sum))))
5+ (4+ 3+ (2+(1+0))))
5+ (4+ (3+(2+1)))

5+ (4+ (3+3))
5+ (4 + 6)

5+ 10

The Art of Functional Programming 109

	Introduction
	About This Book
	A Bite of Functional Programming
	Why Functional Programming Matters?
	Required Tools
	Quiz on Imperative vs. Functional Programming
	Answers to Quiz on Imperative vs. Functional Programming

	Expressions – Building Blocks of Functional Programs
	Everything is an Expression
	Syntax of Expressions
	Parsing Expressions
	Types of Expressions
	Values of Expressions
	Assign Names to Expressions
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Expressions
	Answers to Quiz on Expressions

	Building Abstractions with Functions
	Lambda Calculus: Foundation of Functional Programming
	Function Abstraction and Function Application
	Use Currying for Function Chaining
	General Computation Methods as Higher-Order Functions
	Recursive Functions
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Functions
	Answers to Quiz on Functions

	Compound Data Types
	Group Data Objects into Tuples
	Destruct Tuples With Pattern Matching
	Store Sequences of Data With Lists
	Declare User-defined Types With Algebraic Data Types
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Compound Datatypes
	Answers to Quiz on Compound Datatypes

	Common Computation Patterns
	The map Function
	The filter function
	The fold function
	The zip Function
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Common Computation Patterns
	Answers to Quiz on Common Computation Patterns

	Dataflow Programming with Functions
	List-based Dataflow Programming
	Stream-based Dataflow Programming
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Dataflow Programming with Functions
	Answers to Quiz on Dataflow Programming with Functions

	Applying Functional Programming in Practice
	Handle Collections in Data Processing Applications
	Handle JSON

	Conclusion
	Wrap Up
	Where to Go from Here?

