The Art of

Functional
Programming

with examples in OCaml, Haskell, and Java

Minh Quang Tran, PhD

The Art of Functional Programming

Copyright © 2024 Minh Quang Tran
All rights reserved.

About the author:

Minh Quang Tran has over 20 years of experience
studying software development and working in the
software industry. He has worked in various tech
startups and large software companies in Europe. He
holds a Bachelor of Computer Science from
Furtwangen University, Germany, an M.Sc. in
Computer Science from McMaster University, Canada,
and a Ph.D. in Computer Science from the Technical
University of Berlin, Germany. His interest lies in
understanding and mastering the fundamentals and
principles that transcend programming languages,
frameworks, and tools.

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

2 Expressions - Building Blocks of Functional
Programs

2.1 Everything is an Expression

Functional programming is all about evaluating expressions to val-
ues. For someone new to functional programming, this concept can
be hard to grasp at first. A great way to understand it is by contrast-
ing it with imperative programming.

In his Turing Award lecture Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its Algebra of Programs,
John Backus shows that an imperative programming language -
such as C and Java - splits language elements into two worlds,
expressions and statements. Expressions are those constructs
that evaluate to values. In C or Java, we can define arithmetic
expressions like 1 + 2, boolean expressions like true || false,
and string expressions like "Hello". They all evaluate to values.
Statements, on the other hand, are commands that perform
something like variable assignment s = s + 1, if statements
for branching, and for/while loops for executing statements
repeatedly. Statements are characterized by their side effects.

Functional programming paradigm does not have any statements,
no variable assignments, no if statements, and no for/while
loops. Therefore, instead of variable assignments, we pass values
around via function arguments and return values. Conditionals like
if are expressions rather than statements. To formulate repeated
computations, functional programming relies on recursive func-

The Art of Functional Programming 28

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

tions instead of loops. Everything is an expression in the functional
paradigm.

The following diagram compares the world-view difference be-
tween imperative and functional programming languages.

Expressions Statements Expressions

1+2

variable assignments 1+2 functions

true Il false if statements true Il false if expressions

"Hello" for/while loops

"Hello" let expressions

Imperative programming Functional programming
paradigm paradigm

Figure 7: Language elements in imperative and functional
programming

No wonder functional programming can feel odd for the uninitiated.
It requires us to unlearn statements entirely. Since everything is
an expression in the functional paradigm, a central part of learn-
ing afunctional programming language is learning how to construct
expressions and combine them to build larger ones. We’ll discuss
arithmetic, boolean, and string expressions in OCaml. Next, we’ll
discuss 1 f expressions, functional programming’s alternative to i f
statements in imperative programming languages.

The Art of Functional Programming 29

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

2.1.1 Arithmetic expressions

OCaml provides built-in literal values for integer numbers, such as
1 and 2. Those literal values are often termed primitive expressions
because they represent the simplest possible expressions.

OCaml provides built-in operators: +, -, x, / and mod. These are
used to add, subtract, multiply, divide, and calculate the remainder
of two integers. We can build compound expressions with the oper-
ators.

Here, 1 and 2 are called operands. The + operator is called a binary
operator because it accepts two operands. Compound expressions,
inturn, can be used as operands, allowing us to construct arbitrarily
complex arithmetic expressions. For example,

(1 +2) x (3 -4 x%05)

OCaml provides dedicated operators for float numbers. To add, sub-
tract, multiply, and divide float numbers, weuse +.,-.,*.,and /.

3.14 x. 2.0 *. 2.0

Note that in OCaml, we can write 2. instead of 2.0 That means the
expression above can be rewritten as

The Art of Functional Programming 30

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

3.14 x. 2. *. 2.

2.1.2 Boolean expressions

OCaml also provides comparison operators, such as =, >, >=, <, and
<= for comparing two expressions. For example:

1 =2
(1 +2) x (3 -4%5)>6+7

Comparison operators construct boolean expressions that evaluate
totrueor false. We combine boolean expressions with each other
using logical operators not (negation), && (AND), and | | (OR). For
example:

true && (1 > 2)
((L+2) * (3-4x5)=-51) |] (1L>2)
not (true && (1 > 2))

Of course, there is no limit to how deeply those boolean expressions
can be nested. Also notice that while most operators we have seen
are binary, not exemplifies what is called a unary operator because
it accepts only one operand.

The Art of Functional Programming 31

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

2.1.3 String expressions

Like most programming languages, string literals in OCaml such as
"Hello'" are put inside quotes. We can use the » operator to con-
catenate two strings in OCaml.

llHe'L'LO nm A IIFPH

2.1.4 If expressions

One crucial aspect of any powerful programming language is test-
ing a condition and choosing alternative computations depending
on the result. Imperative programming languages provide the if
statement used to express “if something is true, do this, or else do
that.” The following Java code shows a typical use of the i f state-
ment to calculate the maximum of two numbers, a and b.

if (a > b) {
max = a;
} else {
max = b;
}

Asyou can see, the max variable is updated depending on the condi-
tion. Butin the functional paradigm, 1 f is an expression of the form
if el then e2 else e3. Theright way of thinking is that if e1
evaluates to true, the result is the value of the expression e2. Else,
the result is the value of the expression e3. For example:

The Art of Functional Programming 32

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

if 1 > 2 then 1 else 2

The else branch in OCaml’s 1 f expression is mandatory because
the entire 1 f is treated as an expression, meaning it has to evaluate
to a value regardless of the condition’s outcome.

Since the condition and the two branches, then and else, may
contain an expression, an if expression can be deeply nested
that contains arbitrarily complex expressions, including other if
expressions. For example:

if 1 = 2 then if (1 + 2) * (3 - 4 x 5) = -51
then 100 / 6 else 5 - 1 else 42

The mental shift from 1 f statements to 1 f expressions is a first step
towards understanding functional programming’s worldview - ev-
erything is an expression.

2.1.5 Advantages of everything-is-expression world-view

You may now be wondering, “Wait a moment! The imperative
programming paradigm includes both expressions and statements,
whereas the functional programming paradigm only incorporates
expressions, devoid of any statements. Does this mean that the
functional programming paradigm is less expressive than its im-
perative counterpart? Moreover, what could be the advantage of
omitting such language elements??”

As it turns out, removing statements does not necessarily decrease

The Art of Functional Programming 33

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

the expressiveness of a programming language. This is under-
pinned by the Church-Turing thesis, which states that lambda
calculus - the foundation of functional programming - is as expres-
sive as a Turing machine, the basis of imperative programming.
We’ll discuss lambda calculus in the next chapter.

As for the second question, although it might sound counter-
intuitive, there are enormous benefits associated with removing
statements and treating everything as expressions. Such an ap-
proach allows functional programming languages to fully harness
the power of combination. Before explaining why, however, allow
me a short digression.

Do you play Lego? Many kids and adults enjoy spending hours
building houses, robots, and human figures from Lego bricks. What
makes Lego so compelling is that we can combine the same set of
blocks in endless ways to build virtually anything, limited only by
our imagination.

The secret of Lego’s incredible flexibility lies in its adherence to what
Harold Abelson and Gerald Jay Sussman, along with Julie Sussman,
call the closure property in their seminal book Structure and Inter-
pretation of Computer Programs (SICP). They describe the closure
property as follows: “An operation for combining data objects sat-
isfies the closure property if the results of combining things with
that operation can themselves be combined using the same oper-
ation.”

In the context of Lego, we can consider each Lego brick as a “data
object” and the act of connecting one Lego brick to another as the

The Art of Functional Programming 34

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

“operation.” When two bricks are connected, they form a new object
- a composite of the two bricks. Intriguingly, this new object can be
treated just like any other single LEGO brick. It can be connected to
other bricks using the same operation, fully embodying the closure
property. As we can see, closure property is the secret of the power
of combination, as it allows us to build complex things from parts
that are themselves made of parts.

Lego bricks

Brick 3

Brick 2

Figure 8: Lego satisfies closure property as connecting bricks
results in a new brick

Why does that have anything to do with the art of functional
programming? Because the same magic applies to functional
programming! By treating everything as expressions, the func-
tional programming paradigm inherently satisfies the closure
property. Given two expressions, we can combine them into a new
expression, which can, in turn, be further combined with other
expressions, and so on.

The Art of Functional Programming 35

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

However, the closure property is not entirely satisfied within the im-
perative programming paradigm due to the two divided worlds of
expressions and statements discussed at the beginning of this sec-
tion. Statements and expressions live in two different sets and often
do not compose well with each other.

Let’s look at a concrete example of this. As we saw in the previous
section, functional programming languages treat conditionals like
if 1 > 2 then 0 else 42 as expressions. Because of this, we
can combine it with other expressions easily. For example, if 1

> 2 then 0 else 42 can be used as an operand of the operator

+.

Expressions

if 1 =2 then 0 else 42

Expression 1

@ if 1 =2 then 0 else 42 @ 3

Expression 2

Expression 4
3

Expression 3

Figure 9: Combining if expression with another expression via ‘+’
operator

However, we cannot do this in an imperative programming lan-

The Art of Functional Programming 36

2 EXPRESSIONS - BUILDING BLOCKS OF FUNCTIONAL
PROGRAMS

guage where 1 f is a statement rather than an expression.

Expressions Statement

if (1==2){
r=0;
}else{
r=42;
}

Figure 10: if statement can not be composed with another
expression via ‘+’ operator

This example is admittedly tiny, but it shows that functional pro-
gramming excels at composition by treating everything as expres-
sion.

2.2 Syntax of Expressions

At its core, a program written in any textual programming language,
such as OCaml, Java and Python is nothing more than a long string
consisting of characters we enter with a keyboard. A string that
makes up a valid program in one programming language might be
considered invalid in another and vice versa. To illustrate, consider
the following obscure string:

FHtttttt [Dt F > Rt E> FHHLSKLK=] D+ D+,
R T L B o |

The Art of Functional Programming 37

	Introduction
	About This Book
	A Bite of Functional Programming
	Why Functional Programming Matters?
	Required Tools
	Quiz on Imperative vs. Functional Programming
	Answers to Quiz on Imperative vs. Functional Programming

	Expressions – Building Blocks of Functional Programs
	Everything is an Expression
	Syntax of Expressions
	Parsing Expressions
	Types of Expressions
	Values of Expressions
	Assign Names to Expressions
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Expressions
	Answers to Quiz on Expressions

	Building Abstractions with Functions
	Lambda Calculus: Foundation of Functional Programming
	Function Abstraction and Function Application
	Use Currying for Function Chaining
	General Computation Methods as Higher-Order Functions
	Recursive Functions
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Functions
	Answers to Quiz on Functions

	Compound Data Types
	Group Data Objects into Tuples
	Destruct Tuples With Pattern Matching
	Store Sequences of Data With Lists
	Declare User-defined Types With Algebraic Data Types
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Compound Datatypes
	Answers to Quiz on Compound Datatypes

	Common Computation Patterns
	The map Function
	The filter function
	The fold function
	The zip Function
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Common Computation Patterns
	Answers to Quiz on Common Computation Patterns

	Dataflow Programming with Functions
	List-based Dataflow Programming
	Stream-based Dataflow Programming
	Programming Challenges
	Solutions to Programming Challenges
	Quiz on Dataflow Programming with Functions
	Answers to Quiz on Dataflow Programming with Functions

	Applying Functional Programming in Practice
	Handle Collections in Data Processing Applications
	Handle JSON

	Conclusion
	Wrap Up
	Where to Go from Here?

