The Art of

Functional
Programming

with examples in OCaml, Haskell, and Java

Minh Quang Tran, PhD

The Art of Functional Programming

Copyright © 2024 Minh Quang Tran
All rights reserved.

About the author:

Minh Quang Tran has over 20 years of experience
studying software development and working in the
software industry. He has worked in various tech
startups and large software companies in Europe. He
holds a Bachelor of Computer Science from
Furtwangen University, Germany, an M.Sc. in
Computer Science from McMaster University, Canada,
and a Ph.D. in Computer Science from the Technical
University of Berlin, Germany. His interest lies in
understanding and mastering the fundamentals and
principles that transcend programming languages,
frameworks, and tools.

1 INTRODUCTION

1 Introduction

1.1 About This Book
1.1.1 Book description

Welcome to The Art of Functional Programming book!

Functional programming is a powerful and elegant programming
paradigm. Initially only popular among university researchers, it’s
gained much traction in the software industry in the last few years.
From big companies to start-ups, engineers and managers have real-
ized that functional programming excels at abstraction and compo-
sition. Functional programming allows for highly concise solutions
with increased safety. This has led to rising demand for software en-
gineers with functional programming skills. This book will help you
move your programming skills to the next level.

This book is grounded on my beliefs about software development
resulting from my reflection after many years of studying and work-
ing in the software industry. First, there are tons of programming
languages, frameworks, and tools out there - with many more com-
ingin the future. The only way to stay ahead of the game in this vast
and quickly changing software industry is to master the fundamen-
tals and principles that cut across programming languages, frame-
works, and tools. In the case of functional programming, learning
to adopt the functional way of solving problems is much more pro-
ductive than memorizing how to write functional code in a partic-
ular language. This book teaches this functional way of thinking.

The Art of Functional Programming 4

1 INTRODUCTION

We’ll also learn many fundamental techniques from programming
languages, such as parsing, compilation, and type checking.

Second, | believe that a technique or tool is not very useful if it does
not help us solve real-world problems and make our lives easier. In
this book, we’ll only look at examples and exercises that are typi-
cally encountered in a programmer’s day-to-day job. Furthermore,
an entire chapter is dedicated to applying what we’ve learned to
real-world scenarios. In particular, we’ll use functional program-
ming to process collections of data for an e-commerce application
and handle the JSON datatype.

| like to think of the duality of striving to grasp the fundamental
principles of the functional paradigm while applying it to real-world
problems pragmatically as the yin and yang of the journey to master
functional programming.

Figure 1: Yin and yang as a symbol of duality

Throughout this book, we’ll mainly utilize OCaml, supplemented oc-
casionally by Haskell, to illustrate the key concepts and techniques
inherent to functional programming throughout the book. To high-
light the differences between functional and imperative paradigms,

The Art of Functional Programming 5

1 INTRODUCTION

we’ll draw comparisons with Java.

OCaml and Haskell, both members of the ML family, are uniquely
suited to demonstrating the power and elegance of the functional
programming paradigm, having been designed with functional pro-
gramming at their core. Peter Norvig, in his insightful essay Teach
Yourself Programming in Ten Years, advises burgeoning software
engineers to “learn at least a half dozen programming languages.
Include ... one [language] that emphasizes functional abstraction
(like Lisp or ML or Haskell).”

Now, you may be wondering, “I’'m a Go, Java, JavaScript, Kotlin,
Swift, Python, Scala, X programmer. Can | still benefit from this
book?” Iwholeheartedly assure you that the answer is aresounding
“YeS!”

I’ve titled this book “The Art of Functional Programming” precisely
because it teaches the timeless principles of functional program-
ming that transcend specific programming languages. We’ll delve
into the essence of programming, exploring concepts like abstrac-
tion, composition, code reusability, and generic programming, etc.,
and demonstrate how functional programming enables us to em-
body these principles elegantly. You can apply themin any program-
ming language that supports the functional programming style.

Here is the summary of the chapters in this book:

+ In Chapter 1: Introduction, we’ll start the book with an intro-
duction to functional programming. In particular, we’ll see
how it can overcome some of the inherent weaknesses of the
imperative programming paradigm. We’ll also discuss why

The Art of Functional Programming 6

1 INTRODUCTION

functional programming matters to any software engineer.

+ In Chapter 2: Expressions - The Building Blocks of Functional
Programs, we examine expressions and how to build complex
expressions from simplerones. Three aspects of expressions -
syntax, types, and semantics - will be covered. Along the way,
we’ll gain a much deeper understanding of how programming
languages work, including parsing, type checking, interpreta-
tion, and compilation.

+ In Chapter 3: Building Abstractions with Functions, we’ll get
to know lambda calculus - a mathematical model serving
as the foundation of all functional programming languages.
We’ll learn how to capture computation patterns as functions.
Finally, we’ll discuss various techniques for working with
functions such as currying, recursion, and higher-order
functions.

« In Chapter 4: Compound Data Types, we’ll focus on the com-
pound data types typically found in functional programming
languages, such as tuples and lists. Furthermore, we’ll use al-
gebraic data types to represent hierarchical data, and pattern
matching to extract data from compound data types.

+ In Chapter 5: Common Computation Patterns, we’ll dive into
some of the most common computation patterns, such as
map, filter, fold, and zip. These functions capture highly gen-
eral computation patterns on lists and other data structures
that can be reused to formulate many other functions.

« In Chapter 6: Dataflow Programming with Functions, we’ll go

The Art of Functional Programming 7

1

INTRODUCTION

over dataflow programming, a programming paradigm that
emphasizes composing programs from existing components.
We’ll learn how functional programming allows us to do
dataflow programming elegantly and reap all its benefits.

In Chapter 7: Applying Functional Programming in Practice,
we’ll apply what we’ve learned to process collections of data
commonly found in mobile and web applications, as well as
backend services. Furthermore, we’ll use functional program-
ming to represent and handle JSON.

In Chapter 8: Conclusion, we’ll conclude the book and review
what we’ve learned and what are the next steps you can pur-
sue after reading this book.

1.1.2 Intended audience

This is a beginner and intermediate book aimed at software engi-

neers, engineering managers, or computer science students inter-

ested in understanding the essence of functional programming. It

is also an excellent fit for individuals who are currently preparing

for coding interviews and want to improve their problem-solving

skills.

1.2 ABite of Functional Programming

Functional programming is a programming paradigm — a style or

a way of thinking when writing software programs. There are many

The Art of Functional Programming 8

1 INTRODUCTION

programming paradigms available, some of which are presented in
the following diagram.

Programming
paradigm

Imperative Object-oriented Functional Dataflow Logical
programming programming programming programming programming

Figure 2: Programming paradigms

The imperative programming paradigm is the oldest, and still the
most popular, paradigm used today. As the term “imperative” indi-
cates, this paradigm models a program as a sequence of commands
that change a program’s state - “first do this, then do that.” Even if
we follow the object-oriented programming paradigm by encapsu-
lating logic into classes, we’ll likely implement the class methods in
the imperative style.

Why has imperative programming dominated the programming
world? In his Turing Award lecture titled Can Programming Be
Liberated from the von Neumann Style? A Functional Style and Its
Algebra of Programs, the computer scientist John Backus gives an
insightful answer. According to his observation, the reason can
be traced back to the von Neumann architecture. Named after
the mathematician John von Neumann, who took inspiration from
the Turing machine, it is a computer architecture used by most
computers produced today.

The Art of Functional Programming 9

1 INTRODUCTION

In the following, we’ll review the von Neumann architecture and
discuss several problems of the imperative programming paradigm
due to its tight coupling with this architecture. Then we’ll see how
the functional programming paradigm can elegantly overcome
those problems.

1.2.1 Von Neumann architecture

In its simplest form, a von Neumann computer consists of a Central
Processing Unit (CPU), a memory, and a bus that connects them.
The CPU acts as the brain of the computer with the ability to exe-
cute a predefined set of machine code instructions. These instruc-
tions are in binary form, consisting of 0s and 1s, and do a very primi-
tive thing, such as adding two numbers or testing whethera number
equals zero or not. The CPU has a handful of registers to store data
needed when executing an instruction.

The memory is the place where a program and its data are stored.
A program is a sequence of machine code instructions. The CPU
and the memory are connected via a bus. Due to this, a subset of
machine code instructions is dedicated to loading data from mem-
ory onto the registers or storing the data from the register onto the
memory.

The following diagram illustrates the von Neumann architecture.

The Art of Functional Programming 10

1 INTRODUCTION

Program
instruction

Load data from memory
Control Unit onto register
<
N J
(N 11010010
Arithmetic Logic Unit < > 10010011
. J Bus 10001101
e N R
Registers Store data from register 4
onto memory

_ " R,

CPU Memory

Figure 3: The von Neumann architecture

So, how does a program run? It’s quite simple. The CPU runs
the program following a mechanical fetch-execute cycle. First, it
fetches the first instruction in the program and executes it. Then it
fetches the nextinstruction and executes it, and this cycle continues
on. Some instructions affect the order of execution. For instance, a
jump instruction directs the CPU to jump back to a previous point
of the instruction sequence. A branch instruction tells the CPU
to branch to a particular instruction if some condition is true, for
example, if two registers have the same values. These instructions
are typically combined to implement loops and if-statements.

The Art of Functional Programming 11

1 INTRODUCTION

1.2.2 Low-level nature of imperative programming

Let’s stop for a moment and reflect on the thought process when
programming for the von Neumann computer. A program is con-
structed as a sequence of instructions whose main task is to move
data back and forth between the CPU and memory. These instruc-
tions also perform arithmetic and logical operations. The primary
concern is how to update the memory cells in a stepwise manner.
This model of programming for the von Neumann architectureis the
essence of what imperative programming is about.

Consider, forinstance, an example of calculating the sum of squares
of the first n numbers in the imperative style.
int sum = 0; i = 0;
while (i < n) {
i=1 + 1;
sum = sum + 1 * 1;

}

This program might be written with a high-level language, such as
C, Java, or Python. Yet, the code is nothing more than a sequence of
statements telling the physical computer how to update the mem-
ory. In particular, the variables sum and 1 correspond to the mem-
ory cells. An assignment statement, such as i = i + 1, equals
moving the data from the memory to the CPU’s registers, asking the
CPU to perform the addition, and moving the data from the regis-
ters to the memory to update the memory cell occupied by i. The
while loop corresponds to how a physical computer uses branch
and jump instructions to execute instructions repeatedly so long as
the condition is still valid.

The Art of Functional Programming 12

1 INTRODUCTION

Its coupling with the von Neumann architecture makes the impera-
tive programming paradigm quite limited when it comes to forming
abstractions and compositions when constructing programs.

1.2.3 Functional programming can do better

Let’s use the functional programming paradigm to calculate the
sum of squares of the first n numbers and compare the functional
version with the imperative one.

Imperative style

int sum = 0; i = 0;
while (i <= n)
1 =1+ 1;
sum = sum + i * 1;

A

}

Functional style

(fold (+) © . map square) [1l..n]

The imperative program is just a sequence of low-level statements
for updating variables rather than constructed from simpler parts.
The loop is a single unit and cannot be broken into smaller compo-
nents. In contrast, the functional program is built from reusable
parts. Only the functions - square, addition (+), and the initial
value 0 - are specific to this program. The rest is assembled from
general-purpose components, such as map, fo'ld, and function
composition. In particular, map applies a given function to all
list elements, whereas fold combines elements in a list using a

The Art of Functional Programming 13

1 INTRODUCTION

function, starting from an initial value. The function composition
operator, ., allows us to turn the output of one function into the
input of another one.

In fact, we can view the functional program above as a dataflow pro-
gram that emphasizes the composability of this solution.

[1;2;3; 4] [1;4;9; 16] 30
map: fold:
square (+)0

Figure 4: Functional program viewed as dataflow program

Another critical difference is that the first program is imperative,
while the second one is descriptive. More specifically, the imper-
ative program contains a sequence of commands stating how to
initialize variables and update them in each step. The downside
is we must mentally execute it to understand what it does, which
requires a higher cognitive load. The functional program is declar-
ative because it describes what the program does rather than how
each step is computed. We can grasp the program based on its
structure in one fell swoop without mentally executing it.

Now assume we would like to write another program that computes
the sum of squares of only prime numbers between 1 and n. Using
the imperative style, we can copy the code of the old program and
add an 1 f statement.

int sum = 0; i = 0;

The Art of Functional Programming 14

1 INTRODUCTION

while (i <= n) {
i=1 + 1;
if (isPrime(i)) {
sum = sum + 1 * 7;
}
}

Here, we assume isPrime is a method that returns true if the ar-
gument is a prime and returns false otherwise.

However, in the functional programming paradigm, the solution is
much more elegant.

(fold (+) © . map square . filter 1isPrime)
[1..n]5;

Compared to the imperative version, this program has a higher de-
gree of composability, with functions readily combined into more
powerful constructs. Here, we plug in another general-purpose
function called filter to choose prime numbers from the list
before passing them to map and then fold.

Let’s look at the data flow diagram below:

filter:
isPrime

Figure 5: Calculate sum of squares of prime numbers in functional

[1;2;3;4] 18

style

Itisimportantto emphasize thatit’s by no means the purpose of this

The Art of Functional Programming 15

1 INTRODUCTION

comparison to show that functional programming is better than im-
perative programming. As with any tool, way of thinking, or method
of solving problems, each programming paradigm is more suitable
for particular situations and less for others. Developing an intuition
to decide when to use what tool and method is part of becoming
an expert in any field, including programming. This book aims to
help us develop this intuition so that we’ll know when to utilize the
power of functional programming and when not to.

1.3 Why Functional Programming Matters?

Areyou a professional software engineer or aspire to become one? If
yes, functional programming is undoubtedly among the most valu-
able skills to learn. This section will show why every software engi-
neer should learn functional programming and why the best time to
startis today.

1.3.1 Powerful problem-solving tool

Learning functional programming means you acquire a new tool to
solve problems. As with any craftsmanship, the more tools you have
mastered and have at your disposal, the more skillful you become.
In hisinsightful essay Teach Yourself Programming in Ten Years, Peter
Norvig recommends aspiring software engineers to “learn at least a
half dozen programming languages. Include ... one [language] that
emphasizes functional abstraction (like Lisp or ML or Haskell)”. Both
programming languages used in this book, OCaml and Haskell, are
ML languages that emphasize functional abstraction.

The Art of Functional Programming 16

1 INTRODUCTION

Functional programmingis a great tool to master because it can ele-
gantly solve many programming problems in various domains. For
instance, functional programming excels at applications that deal
with hierarchical structures such as JSON and XML. Functional pro-
gramming is also well suited to data processing in mobile apps, web
apps, or backend services, especially when filtering, transforming,
and aggregating data.

Even if we don’t use functional programming in our day-to-day
work, we still hugely benefit from learning it. Functional program-
ming focuses on composition, or building complex programs from
simpler ones, as well as on abstraction, or defining highly reusable
general functions capturing common computation patterns. These
are vital techniques for managing complexity when structuring
code and building large software systems. As a result, learning the
functional programming paradigm sharpens our ability to design
software and write clean reusable code.

1.3.2 The trend from imperative towards the declarative
paradigm

The software industry has witnessed a gradual shift towards func-
tional programming in recent years. Non-functional mainstream
programming languages, such as Java, keep introducing features to
write functional code. New programming languages, such as Elm,
Elixir, Scala, Swift, and Kotlin, support functional programming
from the ground up. Furthermore, more and more frameworks
and libraries are heavily based on the functional programming

The Art of Functional Programming 17

1 INTRODUCTION

paradigm, such as ReactiveX and Akka Streams. This implies
that there is an increasing demand for software engineers with
functional programming skills.

Interestingly, the trend towards functional programming is just a
part of an overall transition from the imperative to the declarative
paradigm in the software industry. Some of them are declarative
Ul, declarative build systems, declarative build pipelines, and even
declarative deployment infrastructure.

(3\ 4 1\
Declarative Functional
(programming programming
\ J g
Flutter
E—
Declarative Ul
(A
-—
Jetpack Compose
(& J
Maven
Declarative Declarative build
approaches system
Gradle
) N
Declarative build Declarative Jenkins
pipelines pipeline
— J
- Terraform
Declarative J
— infrastructure as
code)
CloudFormation

Figure 6: Use cases for declarative paradigm in software industry

The Art of Functional Programming 18

1 INTRODUCTION

Take build systems, for instance. The two most popular build sys-
tems today, Maven and Gradle, follow the declarative approach. We
tell the system what we want to achieve, and the build system will
figure out how to actually do it. This contrasts with imperative build
systems like Ant, where we explicitly specify how the system should
perform the build by listing an ordered sequence of the statements
or commands.

The evolution from imperative to declarative paradigms is also a no-
table shift in front-end development. Many of you probably still re-
member not so long ago, web development was primarily driven by
jQuery, a JavaScript library that facilitated direct DOM (Document
Object Model) manipulation. This approach was inherently imper-
ative, as we explicitly stated how and when to modify a DOM ele-
ment.

However, this imperative approach has been largely superseded by
a more intuitive, declarative paradigm championed by modern Ul
libraries such as React and Vue. Instead of dictating each specific
change to the DOM, we now merely declare how a page should
look. It’s then the responsibility of these libraries to figure out the
optional sequence of DOM manipulations to achieve the desired
outcome.

Declarative systems, whether for describing build systems or craft-
ing Ul components, offer numerous advantages over their impera-
tive counterparts. In particular, they allow us to define elements
at a high level without getting entangled in the intricate details of
implementation. Moreover, they make it easier to create complex
components from smaller ones. The same can be said about declar-

The Art of Functional Programming 19

