

GraphQL for Rails Developers
Build a GraphQL API for Your Rails App

Ryan Bigg

Table of Contents

1. Getting started with GraphQL . 1
1.1. Creating a new Rails application . 1
1.2. Adding RSpec . 2
1.3. Adding the GraphQL gem . 3
1.4. Using our GraphQL schema. 6
1.5. How the schema fits together . 8

Chapter 1. Getting started with
GraphQL
In this short first chapter, we’re now going to create a new Rails app and add the

graphql gem to that app. We’ll then run the graphql gem’s in-built generator and

setup an Active Record model so that we have something to use in our GraphQL API.

1.1. Creating a new Rails application

The application that we’ll be working on during this book is an application called

Repo Hero. It’s going to be a review aggregator for Git repositories. Users will be

able to add their favorite repositories, categorize them and to leave reviews for

those repositories. All of this will be enabled through our GraphQL API by the end of

this book.

To get us started, we’ll make sure we have the right version of Rails installed:

gem install rails -v 7.1.0

And then we can generate this new application:

rails _7.1.0_ new --api --minimal repo_hero

The --api and --minimal options passed to Rails here will make the application as

small as it can be, only including the bits we want, and nothing that we don’t want.

1.1. Creating a new Rails application

1

1.2. Adding RSpec

To test this application and all it does, we’re going to use RSpec[1]. We’re setting that

up here so that when we run generators later on they will be generated with RSpec

files, rather than Test::Unit files.

To setup RSpec, we’ll run this command:

bundle add rspec-rails --group "development, test"

Once this command as finished, we’ll now run the RSpec installer:

rails g rspec:install

This will add the base RSpec files to our application:

create .rspec
create spec
create spec/spec_helper.rb
create spec/rails_helper.rb

With this gem now setup, we’ll work on adding the graphql gem to our application.

1.2. Adding RSpec

2

1.3. Adding the GraphQL gem

The graphql gem is the gem for building GraphQL APIs within Ruby applications.

It’s used by companies such as Shopify and GitHub. And now Repo Hero!

We can install the graphql gem by using the wonderful bundle add command

again:

bundle add graphql

Once that gem is installed, then we can run a Rails generator that the gem provides.

This generator will set up the GraphQL structure that our application needs:

rails g graphql:install

This generator generates quite a few different files:

 create app/graphql/types
 create app/graphql/types/.keep
 create app/graphql/repo_hero_schema.rb
 create app/graphql/types/base_object.rb
 create app/graphql/types/base_argument.rb
 create app/graphql/types/base_field.rb
 create app/graphql/types/base_enum.rb
 create app/graphql/types/base_input_object.rb
 create app/graphql/types/base_interface.rb
 create app/graphql/types/base_scalar.rb
 create app/graphql/types/base_union.rb
 create app/graphql/types/query_type.rb
add_root_type query
 create app/graphql/mutations
 create app/graphql/mutations/.keep
 create app/graphql/mutations/base_mutation.rb
 create app/graphql/types/mutation_type.rb

1.3. Adding the GraphQL gem

3

add_root_type mutation
 create app/controllers/graphql_controller.rb
 route post "/graphql", to: "graphql#execute"
Skipped graphiql, as this rails project is API only
 You may wish to use GraphiQL.app for development:
https://github.com/skevy/graphiql-app
 create app/graphql/types/node_type.rb
 insert app/graphql/types/query_type.rb
 create app/graphql/types/base_connection.rb
 create app/graphql/types/base_edge.rb
 insert app/graphql/types/base_object.rb
 insert app/graphql/types/base_object.rb
 insert app/graphql/types/base_union.rb
 insert app/graphql/types/base_union.rb
 insert app/graphql/types/base_interface.rb
 insert app/graphql/types/base_interface.rb
 insert app/graphql/repo_hero_schema.rb

We’ll see what most of these files do in due time. For now, we’re setting them up so

that we will have access to them later.

The main thing that we should care about here is that there’s now a route that has

been added to config/routes.rb:

Listing 1. config/routes.rb

post "/graphql", to: "graphql#execute"

This route sets up our GraphQL entrypoint. Whenever we perform a GraphQL

operation, we’ll be making a POST request to /graphql. GraphQL uses a POST request

so that it can support long request bodies, which is something that a GET request

does not do.[2]. This is different to how you might understand request routing within

a Rails application where read operations are typically GET requests, and write

operations are typically POST, PUT, PATCH or DELETE. This is a quirk of working with

GraphQL, and a substantial departure for what those familiar with REST APIs might

1.3. Adding the GraphQL gem

4

expect - but ultimately it’s neither good nor bad. GraphQL has ways of

differentiating between read and write operations without using HTTP methods,

and we’ll see how that works later on.

This entrypoint points at a controller called GraphqlController, and an action

within that controller called execute. Let’s take a look at that action now:

Listing 2. app/controllers/graphql_controller.rb

 def execute
 variables = prepare_variables(params[:variables])
 query = params[:query]
 operation_name = params[:operationName]
 context = {
 # Query context goes here, for example:
 # current_user: current_user,
 }
 result = RepoHeroSchema.execute(query, variables: variables, context:
context, operation_name: operation_name)
 render json: result
 rescue StandardError => e
 raise e unless Rails.env.development?
 handle_error_in_development(e)
 end

This action takes in some parameters from the request, and passes them to a class

called RepoHeroSchema and its execute method. This method serves as an

entrypoint into the world of GraphQL for our application. The call to this schema

doesn’t need to happen from within a controller and to demonstrate that we’ll now

break from this walkthrough into a demonstration of how we can execute GraphQL

operations using the RepoHeroSchema, outside the context of a controller.

1.3. Adding the GraphQL gem

5

1.4. Using our GraphQL schema

To use our GraphQL schema, we’re going to write a small script. Just to really nail

down that we can use this thing outside the context of a controller. We can create a

small script called graphql-test.rb at the root of our Rails application.

Listing 3. graphql-test.rb

operation = <<~GQL
query {
 testField
}
GQL

result = RepoHeroSchema.execute(operation)
puts JSON.pretty_generate(result)

In this small GraphQL example, we start inside the operation string by defining the

type of operation: a query.

Then inside that operation, we select fields. GraphQL operations are all about the

fields. When we use a field in a GraphQL operation, we’re telling the API that we

want whatever data is defined for that field.

This script defines the GraphQL operation and will run it on the provided schema.

We don’t need the added complexity of what was in the controller — the variables,

context or even a name for the operation — we just need the query.

Let’s run this script now. We’ll need it to load the RepoHeroSchema, and for that

reason we’ll run this script not using the ruby executable, but instead with rails

runner:

1.4. Using our GraphQL schema

6

rails runner graphql-test.rb

When we run the script, this is the output that we will see:

{
 "data": {
 "testField": "Hello World!"
 }
}

Our GraphQL API has returned us our first response. We requested a field called

testField, and it returned us the data contained within that field, which is

currently defined as the string "Hello World!".

But how did our API know to return that value for that field? To get an answer to

that, we’ll need to dive into that RepoHeroSchema class and see how it fits together.

1.4. Using our GraphQL schema

7

1.5. How the schema fits together

A GraphQL API is built around a schema, and a schema defines how the API behaves.

Let’s look at the schema that has been defined for our GraphQL API by that

generator that we ran earlier.

Listing 4. app/graphql/repo_hero_schema.rb

class RepoHeroSchema < GraphQL::Schema
 mutation(Types::MutationType)
 query(Types::QueryType)
 ...
end

The main two types of operations, mutations and queries, are defined within their

own type files. As a refresher: mutations are the operations that we use when we’re

creating, updating or deleting data. If we’re reading data, we use queries instead.

We’ll come back to mutations, but for now we will look at the QueryType.

Listing 5. app/graphql/query_type.rb

module Types
 class QueryType < Types::BaseObject
 ...

 # TODO: remove me
 field :test_field, String, null: false,
 description: "An example field added by the generator"
 def test_field
 "Hello World!"
 end
 end
end

1.5. How the schema fits together

8

The QueryType within our application defines a field and its response using the

field method, and defining a method that matches the name of the field. But this is

called test_field, and the field that we were requesting was called testField. So

why the difference? Convention is why. GraphQL corresponds with JavaScript

conventions, and JavaScript conventions are to favor camelCase names, over

snake_case ones.

However, we’re writing Ruby code in QueryType, and so the Ruby convention

applies there and we use test_field instead. When in Ruby code, we’ll use the Ruby

conventions. The GraphQL gem will convert these to JavaScript conventions when

appropriate.

After the name of the field in the field method are several other useful arguments.

The 2nd argument defines the type of the field’s return value: a String.

The null: false declares that the return value for this field will never, ever be

null, and so consumers of this API will not need to do any sort of null-checking on

this field.

Finally, the description option contains documentation that would appear

alongside this field in GraphiQL, or any other GraphQL documentation viewer.

If we were to change the return value of this method, we will see those changes

reflected immediately. Just like we’d expect in any other piece of our Rails

application code. Let’s try this out now by changing the test_field method:

Listing 6. app/graphql/query_type.rb

def test_field
 "Hello GraphQL!"
end

1.5. How the schema fits together

9

Re-running our test script again:

rails runner graphql-test.rb

Will show that the output has changed:

{
 "data": {
 "testField": "Hello GraphQL!"
 }
}

We’ve now got a feel for how to use our GraphQL API, albeit through a script and not

through the traditional request path. Now that we’ve seen how to use GraphQL on

its own, let’s integrate it with something we’re familiar with from a Rails

application: a model.

[1] RSpec has been chosen due to author preference. You could use Test::Unit for writing tests for

GraphQL, if you wanted to.

[2] An explanation of why GraphQL uses POST: https://stackoverflow.com/questions/59162265/why-

are-graphql-queries-post-requests-even-when-we-are-trying-to-fetch-data-and

1.5. How the schema fits together

10

https://stackoverflow.com/questions/59162265/why-are-graphql-queries-post-requests-even-when-we-are-trying-to-fetch-data-and
https://stackoverflow.com/questions/59162265/why-are-graphql-queries-post-requests-even-when-we-are-trying-to-fetch-data-and

	GraphQL for Rails Developers: Build a GraphQL API for Your Rails App
	Table of Contents
	Chapter 1. Getting started with GraphQL
	1.1. Creating a new Rails application
	1.2. Adding RSpec
	1.3. Adding the GraphQL gem
	1.4. Using our GraphQL schema
	1.5. How the schema fits together

