
This short excerpt is from Regular Expressions Machinery: The
Illustrated Guide by Staffan Nöteberg. You can find more information
or purchase an ebook copy at https://www.pragprog.com.

https://www.pragprog.com

Copyright © 2025 Rekursiv AB

All rights reserved. No part of this publication may be reproduced, adapted, or used to train
or test artificial intelligence systems without prior written consent from the author Staffan
Nöteberg or the publisher.

While every effort has been made to ensure the accuracy of the information contained
herein, the author and the publisher assumes no responsibility for any errors or omissions,
or for any damages resulting from the use of this publication.

To inquire about booking the author for podcasts, training sessions, and speaking
engagements at conferences, please contact him directly at staffan.noteberg@rekursiv.se

PDF ISBN: 978-91-989983-0-6

EPUB ISBN: 978-91-989983-1-3

Book Version: V1.0—January, 2025

PART III: Syntactic Sugar,
Abstractions, and
Extensions

In Part II (Two Operations and One Function), we learned how powerful
concatenation, alternation, and the kleene star work together. However, you’re
probably aware that in modern regex dialects, many other operators—for example,
quantifiers, groups, and lookarounds—exist, most of which are abstractions. Without
necessarily adding new regex functionality, abstractions help us write regexes
without thinking about some of the complexity. Others are just syntactic sugar,
making us write easier to read, yet synonymous, regexes. Finally, some extensions
cannot be implemented with a finite automaton. We refer to them as
path-dependent operations. While consuming the input string, we must know how
we arrived in the current state; thus, we need a memory. Under the hood, this
memory is implemented as a stack.

NOTE: Where nothing else is said, examples are written in Ruby. You may install Ruby on
your computer and then start IRB (Interactive Ruby Shell) in a terminal to try out the code.
You may also run IRB online without any installation.

76

https://www.ruby-lang.org/en/documentation/installation/
https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.google.com/search?q=irb+ruby+online
https://www.google.com/search?q=irb+ruby+online

Quantifiers

Sometimes, we want to repeat an expression to make it match more than one
instance in the same input string. If the number of repetitions is known upfront, that
is, it’s a fixed number, we may simply repeat the whole expression. For example, the
expression /LaLaLa/ is a repetition of the expression /La/ three times. Any kind of
fixed or variable number of repetitions is possible with the two original operations
(concatenation and alternation) and the function (kleene star). However, this might
be difficult to read. For example, /(La|LaLa|LaLaLa|LaLaLaLa)/ expresses between one
and four instances of La in an annoyingly verbose way. This is why quantifier functions
exist. These functions don’t add any new functionality to regular expressions, but
instead support us with crispness.

The two most popular repetition requirements are to match either at least one
instance, or at most one instance.

77

At least one means one, two, three, or any other positive integer. What will happen if
we replace the first instance of /a*/ with e in the input string caalery?

'caalery'.sub /a*/,'e' #=> "ecaalery"

The answer is ecaalery because caalery starts with (that is, before the c) zero
instances of a and, /a*/ says that we must match zero to many instances. As I told
you before, most regex automata return the leftmost match. What can be more
leftmost than before the initial character of a string? However, our intention was to
replace repetitions of a with an e. The handy positive closure function, written as a plus
sign, +, comes to the rescue. The expression /a+/ should be read as: match at least
one a.

'caalery'.sub /a+/,'e' #=> "celery"

Thus, replacing /a+/ with e in caalery gives us celery—a delicious vegetable.

The optional quantifier function—written as a question mark—matches at most one
instance of an expression, that is, either zero or one instance. We want to match the
word chickpeas in singular and plural forms, which is easy. The expression
/chickpeas?/ matches chickpea, as well as chickpeas.

'chickpea chicken chickpeas'.scan /chickpeas?/

#=> ["chickpea", "chickpeas"]

The optional quantifier function binds to the s, that is, it makes the s optional. Why
didn’t this function bind to the whole chickpeas subpattern? You guessed it! It’s
because the optional quantifier function takes precedence over concatenation, the
invisible glue between the literal characters in chickpeas.

78

There’s also a generic quantifier function. With braces {}, we can express any kind of
repetition. The normal form has a lowest and a highest acceptable number of
matches, and these two numbers are separated by a comma. The expression
/(La){1, 4}/ matches at least one and at most four La. Let’s see what we get when
we replace matchings with oh in the input LaLaLaLaLaLa.

'LaLaLaLaLaLa'.sub /(La){1,4}/, 'oh'

#=> "ohLaLa"

The default value for the first argument is zero. Thus, the expression /(La){, 4}/

matches at most four and at least zero La uses.

'ohLaLaLaLaLaLa'.sub /(La){,4}/, 'oh'

#=> "ohohLaLaLaLaLaLa"

What was that? Another oh was added, but no La was removed because most regex
automata prefer to return the match that’s leftmost in the input string. We explicitly
said “at least zero instances,” didn’t we? Thus, we matched zero instances right at the
start of the string and replaced that empty string with oh. Perhaps it’s more clear in
this example.

'OhLaLaLaLaLaLa'.sub /(La){,4}/, 'oh'

#=> "ohOhLaLaLaLaLaLa"

No La actually was needed to achieve zero matches. I also said before that
quantifiers are greedy. Why not match four instances of La rather than none? Is
preferring leftmost and being greedy a contradiction? Not at all. However, our
leftmost strategy is ahead of our greedy strategy (or reluctant when this is our
flavor). First, we found a match farest left, then we decided to be greedy right there.

If we keep the first generic quantifier argument, then we can omit the second, in
which case, there’s no upper limit. The expression /(La){1,}/ matches at least one La

and is equivalent to /La+/.

'LaLaLaLaLaLa'.sub /(La){1,}/, 'oh'

#=> "oh"

79

The final version of the generic quantifier function has no comma and contains only
one number. The expression /(La){2}/ matches exactly two instances of La—nothing
more and nothing less.

'LaLaLaLaLaLa'.sub /(La){2}/, 'oh'

#=> "ohLaLaLaLa"

Quantifiers are unary, left-associative, and take precedence over alternation and
concatenation. Consider why the following are true.

● Concatenation: /ab{1, 2}/ equals /a(b{1, 2})/

● Concatenation: /a{1, 2}b/ equals /(a{1, 2})b/

● Alternation: /a|b{1, 2}/ equals /a|(b{1, 2})/

● Alternation: /a{1, 2}|b/ equals /(a{1, 2})|b/

The horizontal axis in the previous image states how many instances a quantifier
matches. It starts with zero, which matches the empty string, and ends in infinity,
that is, there’s no limit to how many times an instance can be repeated and still
match our expression.

The first column (red dots) indicates that kleene star function *, optional quantifier
function ?, and generic quantifier function with first argument zero {0, m} or omitted
{, m} may match zero instances.

The second column (green dots) indicates that kleene star function *, positive closure
function +, and generic quantifier function with second argument omitted {n,} have no
upper limit when it comes to the number of possible matches.

Two Takeaways

● Quantifiers in regexes help specify how many times a preceding element
should be matched, making expressions more compact and readable.

● Common quantifiers include the positive closure +, which matches one or
more repetitions, and the optional quantifier ?, which matches zero or one
repetition.

80

Quantifier Equations

The notation of regular expressions, as Stephen Kleene defined it, has only two
operations—concatenation and alternation—and a function: kleene star. This is
enough to define shorthand functions, like some quantifiers. The shorthand provides
us with a syntax that makes our expressions more readable and maintainable,
though they don’t add any new functionalities. Everything they can do also can be
done with the original two operations (concatenation and alternation) and the
function (kleene star). However, the latter would be more verbose.

To convince you that a quantifier really is just a shorthand, I’ll give you what I call
regex equations. An equation is a mathematical statement that says two expressions
are equal.

Let’s start with the optional quantifier function, written as a question mark. Like all
quantifiers, it binds the expression to the left. In this image, you can see that saying
that the green dot is optional is the equivalent of using alternation to say either we
match nothing or else we match one green dot.

81

The positive closure function is written as a plus sign. Positive closure means we must
match at least one instance of the expression to the left. In the second equation in
the previous image, I claim that a green dot’s positive closure is equivalent to one
mandatory green point concatenated with the closure we get by applying the kleene
star, written as an asterisk, to another green dot. One green dot is mandatory, then
follows zero-to-many green dots. This wasn’t a very provocative proposition, was it?

In regex, we use braces {} as another shorthand quantifier. They hold a pair of
arguments that define the minimum and maximum number of repetitions of the
expression to the left. The third equation in the previous image states that it’s
equivalent to (a) repeat the green dot at least two times and at most four times, and
(b) match two green dots concatenated with the alternation zero, one, or two green
dots.

Do you ever say curly brackets when referring to “{” and “}”? Programmers in the
US often call them braces, and in the UK, they sometimes are called squiggly
brackets. India has the more poetic name flower brackets, and in Sweden, we say
gull wings.

Here are some more equations. Inspect them to ensure that you agree with me that
they’re true.

● a{3} equals a{3, 3}

● a* equals a{0, }

● a+ equals a{1, }

● a? equals a{0, 1}

● (a*)* equals a*

● (a+)+ equals a+

● (a?)? equals a?

● (a*)+ equals (a+)* equals a*

● (a*)? equals (a?)* equals a*

● (a+)? equals (a?)+ equals a*

● a* equals (a+|)

● a? equals (a|)? equals (a|)

● (a|)* equals a*

82

Two Takeaways

● Quantifiers can be expressed using the basic operations (concatenation and
alternation) and the function (kleene star) of regexes, but they offer a more
concise syntax.

● For instance, a? (match zero or one instance of the expression to the left) is
equivalent to a|, and a+ is equivalent to aa*.

83

Reluctant Quantifiers

Greedy (left) and reluctant (right) kleene star.

Because of backtracking, we sometimes might match more than we hoped for. The
task below is to catch all the div tags in an HTML document and put them in a vector.
Our naïve solution provides the wrong answer.

'<div>a</div>c<div>b</div>'.scan /<div>.*<\/div>/

#=> ["<div>a</div>c<div>b</div>"]

Do you remember from Part I what backtracking is? No problem if you don’t. Let’s
explore a regex version:

Regex quantifiers are naturally greedy, that is, they consume as much as they can.
The period symbol in the idiom /.*/ matches anything except newline (more on this
later in the book), and the kleene star * in that expression means that this anything is
repeated as many times as possible. In its first attempt, /.*/ matches
a</div>c<div>b</div>. Unfortunately, this means that the last part of
the regex /<\/div>/ is starving, which makes /.*/ very sad. The latter then
backtracks—that is, un-consumes—the last part of the input string, character by

84

character, until the whole expression matches. Considering that the string ends with
a </div>, the substring a</div>c<div>b will be consumed by /.*/.
Problems may arise from greed.

Many stories tell tales of greedy people who claim more than they need. As Louis
Blanc wrote in 1840 in The Organization of Work: “From each according to his abilities, to
each according to his needs.” We tend to forget that the kleene star * and the period
symbol—that is, the idiom /.*/—in the previous example need to consume more
than the substring <div>a</div>.

Alexander Pushkin describes in The Tale of the Fisherman and the Fish how a magic
fish promises to fulfill whatever the fisherman wishes. The fisherman’s wife
eventually starts asking the fish for bigger and better things—and she gets
them—until she eventually wants to become Ruler of the Sea. The magic fish then
takes back everything he gave the fisherman’s wife.

Quantifiers in regex are naturally greedy. They attempt to consume as much of the
input string as possible. The good news is that regex provides an alternative: the
reluctant (sometimes called lazy) quantifier modifier. You guessed it: The reluctant
modifier makes the quantifiers attempt to consume as little as possible of the input
string. The verb attempt is important here. After the attempt to consume as much
(greedy) or little (reluctant) as possible, there might be subexpressions further to the
right that can’t match the remaining input string, that is, the entire expression can’t
be matched. If this happens, the automaton will backtrack, and our quantifier will
make a new attempt. This time, it will—contrary to its inherent ideology—consume
one less (greedy) or more (reluctant) character compared with its first
uncompromising attempt. The method is repeated until we either can match
everything or confirm that there’s no possible way to create a match.

Does it matter whether we use the greedy or reluctant approach? Well, the strings
that can be matched with greedy are also matched with reluctant, and vice versa.
However, when multiple matches are possible, greedy tracking sometimes will
choose a different match than reluctant tracking. These two approaches also differ in
performance. In some cases, reluctant is faster, while in other cases, greedy is. It’s a

85

question of how many backtrackings we must make. For finite automata, Mr.
Performance shudders at the mere mention of his foe: Mr. Backtracking.

No special symbol for reluctant quantifiers exists. Instead, we have a modifier
symbol—written as a question mark—that may be added to the right of any
quantifier. While * says “repeat as many times as possible,” *? says “repeat as few
times as possible.” What a great duo! Similarly, we may modify any other quantifier.

● Positive closure function with reluctant modifier: at least one, as few as
possible: +?

● Optional quantifier function with reluctant modifier: zero or one, preferably
zero: ??

● Generic quantifier function with reluctant modifier: between three and five
and as few as possible: {𝟹, 𝟻}?

Note that the question mark that modifies quantifiers isn’t the same question mark
that’s used as the optional quantifier function. They may even be used in conjunction
with each other, as ?? indicates above. It’s context dependent whether a question
mark represents the reluctant modifier or the optional quantifier function. Of course, in
some contexts, the question mark also can be a literal, that is, we want to match a
question mark in the input string.

Here are some quantifier examples with and without the reluctant modifier. The first
one is an improved solution to the div tag problem.

'<div>a</div>c<div>b</div>' \

.scan /<div>.*?<\/div>/

#=> ["<div>a</div>", "<div>b</div>"]

'aa'.match /a?/ #=> #<MatchData "a">

'aa'.match /a??/ #=> #<MatchData "">

'aaaaa'.match /a{2,4}/

#=> #<MatchData "aaaa">

at least 2, at most 4, as much as possible

'aaaaa'.match /a{2,4}?/

#=> #<MatchData "aa">

at least 2, at most 4, as little as possible

86

'aaaaa'.match /a{2,}/ #=> #<MatchData "aaaaa">

'aaaaa'.match /a{2,}?/ #=> #<MatchData "aa">

'aaaaa'.match /a{,4}/ #=> #<MatchData "aaaa">

'aaaaa'.match /a{,4}?/ #=> #<MatchData "">

Two Takeaways

● While quantifiers are typically greedy (matching as many repetitions as
possible), they can be made reluctant by adding a question mark ? to match
as few repetitions as possible.

● Reluctant quantifiers can affect performance and may lead to different
matches when multiple matches are possible.

87

Get a Grip on the Regex Machinery
To effectively use regular expressions, you need to understand how the machinery
works under the hood. It’s about taking control of the search process, controlling
how the pattern is matched, and thus getting both faster and more accurate
results.

In this illustrated guide, you gain precisely that understanding.

You can even get started without any prior knowledge of regular expressions.
Before you know it, advanced tools like reluctant, lookbehind and
nondeterministic finite automata will be at your fingertips as you write efficient
and elegant regexes with ease.

This book presents complex concepts in a simple and visual way, with clear
examples and practical applications. Whether you are a programmer, data analyst,
or just want to get better at text processing, this book will take your knowledge to
the next level.

Staffan Nöteberg is a bestselling author passionate about helping people become
more efficient and focused. He is the author of these popular books:

● Pomodoro Technique Illustrated: The Easy Way to Do More in Less Time

● Monotasking: How to Focus Your Mind and Be More Productive

● Guiding Star OKRs: A New Approach to Setting and Achieving Goals

With a background in software development and an interest in productivity,
Staffan combines his expertise with an ability to explain complex topics in an
easy-to-understand way.

https://pragprog.com/titles/snfocus/pomodoro-technique-illustrated/
https://www.skyhorsepublishing.com/9781631585494/monotasking
https://pragprog.com/titles/snokrs/guiding-star-okrs

PART III: Syntactic Sugar,
Abstractions, and
Extensions

In Part II (Two Operations and One Function), we learned how powerful
concatenation, alternation, and the kleene star work together. However, you’re
probably aware that in modern regex dialects, many other operators—for example,
quantifiers, groups, and lookarounds—exist, most of which are abstractions. Without
necessarily adding new regex functionality, abstractions help us write regexes
without thinking about some of the complexity. Others are just syntactic sugar,
making us write easier to read, yet synonymous, regexes. Finally, some extensions
cannot be implemented with a finite automaton. We refer to them as
path-dependent operations. While consuming the input string, we must know how
we arrived in the current state; thus, we need a memory. Under the hood, this
memory is implemented as a stack.

NOTE: Where nothing else is said, examples are written in Ruby. You may install Ruby on
your computer and then start IRB (Interactive Ruby Shell) in a terminal to try out the code.
You may also run IRB online without any installation.

76

https://www.ruby-lang.org/en/documentation/installation/
https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.google.com/search?q=irb+ruby+online
https://www.google.com/search?q=irb+ruby+online

Quantifiers

Sometimes, we want to repeat an expression to make it match more than one
instance in the same input string. If the number of repetitions is known upfront, that
is, it’s a fixed number, we may simply repeat the whole expression. For example, the
expression /LaLaLa/ is a repetition of the expression /La/ three times. Any kind of
fixed or variable number of repetitions is possible with the two original operations
(concatenation and alternation) and the function (kleene star). However, this might
be difficult to read. For example, /(La|LaLa|LaLaLa|LaLaLaLa)/ expresses between one
and four instances of La in an annoyingly verbose way. This is why quantifier functions
exist. These functions don’t add any new functionality to regular expressions, but
instead support us with crispness.

The two most popular repetition requirements are to match either at least one
instance, or at most one instance.

77

At least one means one, two, three, or any other positive integer. What will happen if
we replace the first instance of /a*/ with e in the input string caalery?

'caalery'.sub /a*/,'e' #=> "ecaalery"

The answer is ecaalery because caalery starts with (that is, before the c) zero
instances of a and, /a*/ says that we must match zero to many instances. As I told
you before, most regex automata return the leftmost match. What can be more
leftmost than before the initial character of a string? However, our intention was to
replace repetitions of a with an e. The handy positive closure function, written as a plus
sign, +, comes to the rescue. The expression /a+/ should be read as: match at least
one a.

'caalery'.sub /a+/,'e' #=> "celery"

Thus, replacing /a+/ with e in caalery gives us celery—a delicious vegetable.

The optional quantifier function—written as a question mark—matches at most one
instance of an expression, that is, either zero or one instance. We want to match the
word chickpeas in singular and plural forms, which is easy. The expression
/chickpeas?/ matches chickpea, as well as chickpeas.

'chickpea chicken chickpeas'.scan /chickpeas?/

#=> ["chickpea", "chickpeas"]

The optional quantifier function binds to the s, that is, it makes the s optional. Why
didn’t this function bind to the whole chickpeas subpattern? You guessed it! It’s
because the optional quantifier function takes precedence over concatenation, the
invisible glue between the literal characters in chickpeas.

78

There’s also a generic quantifier function. With braces {}, we can express any kind of
repetition. The normal form has a lowest and a highest acceptable number of
matches, and these two numbers are separated by a comma. The expression
/(La){1, 4}/ matches at least one and at most four La. Let’s see what we get when
we replace matchings with oh in the input LaLaLaLaLaLa.

'LaLaLaLaLaLa'.sub /(La){1,4}/, 'oh'

#=> "ohLaLa"

The default value for the first argument is zero. Thus, the expression /(La){, 4}/

matches at most four and at least zero La uses.

'ohLaLaLaLaLaLa'.sub /(La){,4}/, 'oh'

#=> "ohohLaLaLaLaLaLa"

What was that? Another oh was added, but no La was removed because most regex
automata prefer to return the match that’s leftmost in the input string. We explicitly
said “at least zero instances,” didn’t we? Thus, we matched zero instances right at the
start of the string and replaced that empty string with oh. Perhaps it’s more clear in
this example.

'OhLaLaLaLaLaLa'.sub /(La){,4}/, 'oh'

#=> "ohOhLaLaLaLaLaLa"

No La actually was needed to achieve zero matches. I also said before that
quantifiers are greedy. Why not match four instances of La rather than none? Is
preferring leftmost and being greedy a contradiction? Not at all. However, our
leftmost strategy is ahead of our greedy strategy (or reluctant when this is our
flavor). First, we found a match farest left, then we decided to be greedy right there.

If we keep the first generic quantifier argument, then we can omit the second, in
which case, there’s no upper limit. The expression /(La){1,}/ matches at least one La

and is equivalent to /La+/.

'LaLaLaLaLaLa'.sub /(La){1,}/, 'oh'

#=> "oh"

79

The final version of the generic quantifier function has no comma and contains only
one number. The expression /(La){2}/ matches exactly two instances of La—nothing
more and nothing less.

'LaLaLaLaLaLa'.sub /(La){2}/, 'oh'

#=> "ohLaLaLaLa"

Quantifiers are unary, left-associative, and take precedence over alternation and
concatenation. Consider why the following are true.

● Concatenation: /ab{1, 2}/ equals /a(b{1, 2})/

● Concatenation: /a{1, 2}b/ equals /(a{1, 2})b/

● Alternation: /a|b{1, 2}/ equals /a|(b{1, 2})/

● Alternation: /a{1, 2}|b/ equals /(a{1, 2})|b/

The horizontal axis in the previous image states how many instances a quantifier
matches. It starts with zero, which matches the empty string, and ends in infinity,
that is, there’s no limit to how many times an instance can be repeated and still
match our expression.

The first column (red dots) indicates that kleene star function *, optional quantifier
function ?, and generic quantifier function with first argument zero {0, m} or omitted
{, m} may match zero instances.

The second column (green dots) indicates that kleene star function *, positive closure
function +, and generic quantifier function with second argument omitted {n,} have no
upper limit when it comes to the number of possible matches.

Two Takeaways

● Quantifiers in regexes help specify how many times a preceding element
should be matched, making expressions more compact and readable.

● Common quantifiers include the positive closure +, which matches one or
more repetitions, and the optional quantifier ?, which matches zero or one
repetition.

80

Quantifier Equations

The notation of regular expressions, as Stephen Kleene defined it, has only two
operations—concatenation and alternation—and a function: kleene star. This is
enough to define shorthand functions, like some quantifiers. The shorthand provides
us with a syntax that makes our expressions more readable and maintainable,
though they don’t add any new functionalities. Everything they can do also can be
done with the original two operations (concatenation and alternation) and the
function (kleene star). However, the latter would be more verbose.

To convince you that a quantifier really is just a shorthand, I’ll give you what I call
regex equations. An equation is a mathematical statement that says two expressions
are equal.

Let’s start with the optional quantifier function, written as a question mark. Like all
quantifiers, it binds the expression to the left. In this image, you can see that saying
that the green dot is optional is the equivalent of using alternation to say either we
match nothing or else we match one green dot.

81

The positive closure function is written as a plus sign. Positive closure means we must
match at least one instance of the expression to the left. In the second equation in
the previous image, I claim that a green dot’s positive closure is equivalent to one
mandatory green point concatenated with the closure we get by applying the kleene
star, written as an asterisk, to another green dot. One green dot is mandatory, then
follows zero-to-many green dots. This wasn’t a very provocative proposition, was it?

In regex, we use braces {} as another shorthand quantifier. They hold a pair of
arguments that define the minimum and maximum number of repetitions of the
expression to the left. The third equation in the previous image states that it’s
equivalent to (a) repeat the green dot at least two times and at most four times, and
(b) match two green dots concatenated with the alternation zero, one, or two green
dots.

Do you ever say curly brackets when referring to “{” and “}”? Programmers in the
US often call them braces, and in the UK, they sometimes are called squiggly
brackets. India has the more poetic name flower brackets, and in Sweden, we say
gull wings.

Here are some more equations. Inspect them to ensure that you agree with me that
they’re true.

● a{3} equals a{3, 3}

● a* equals a{0, }

● a+ equals a{1, }

● a? equals a{0, 1}

● (a*)* equals a*

● (a+)+ equals a+

● (a?)? equals a?

● (a*)+ equals (a+)* equals a*

● (a*)? equals (a?)* equals a*

● (a+)? equals (a?)+ equals a*

● a* equals (a+|)

● a? equals (a|)? equals (a|)

● (a|)* equals a*

82

Two Takeaways

● Quantifiers can be expressed using the basic operations (concatenation and
alternation) and the function (kleene star) of regexes, but they offer a more
concise syntax.

● For instance, a? (match zero or one instance of the expression to the left) is
equivalent to a|, and a+ is equivalent to aa*.

83

Reluctant Quantifiers

Greedy (left) and reluctant (right) kleene star.

Because of backtracking, we sometimes might match more than we hoped for. The
task below is to catch all the div tags in an HTML document and put them in a vector.
Our naïve solution provides the wrong answer.

'<div>a</div>c<div>b</div>'.scan /<div>.*<\/div>/

#=> ["<div>a</div>c<div>b</div>"]

Do you remember from Part I what backtracking is? No problem if you don’t. Let’s
explore a regex version:

Regex quantifiers are naturally greedy, that is, they consume as much as they can.
The period symbol in the idiom /.*/ matches anything except newline (more on this
later in the book), and the kleene star * in that expression means that this anything is
repeated as many times as possible. In its first attempt, /.*/ matches
a</div>c<div>b</div>. Unfortunately, this means that the last part of
the regex /<\/div>/ is starving, which makes /.*/ very sad. The latter then
backtracks—that is, un-consumes—the last part of the input string, character by

84

character, until the whole expression matches. Considering that the string ends with
a </div>, the substring a</div>c<div>b will be consumed by /.*/.
Problems may arise from greed.

Many stories tell tales of greedy people who claim more than they need. As Louis
Blanc wrote in 1840 in The Organization of Work: “From each according to his abilities, to
each according to his needs.” We tend to forget that the kleene star * and the period
symbol—that is, the idiom /.*/—in the previous example need to consume more
than the substring <div>a</div>.

Alexander Pushkin describes in The Tale of the Fisherman and the Fish how a magic
fish promises to fulfill whatever the fisherman wishes. The fisherman’s wife
eventually starts asking the fish for bigger and better things—and she gets
them—until she eventually wants to become Ruler of the Sea. The magic fish then
takes back everything he gave the fisherman’s wife.

Quantifiers in regex are naturally greedy. They attempt to consume as much of the
input string as possible. The good news is that regex provides an alternative: the
reluctant (sometimes called lazy) quantifier modifier. You guessed it: The reluctant
modifier makes the quantifiers attempt to consume as little as possible of the input
string. The verb attempt is important here. After the attempt to consume as much
(greedy) or little (reluctant) as possible, there might be subexpressions further to the
right that can’t match the remaining input string, that is, the entire expression can’t
be matched. If this happens, the automaton will backtrack, and our quantifier will
make a new attempt. This time, it will—contrary to its inherent ideology—consume
one less (greedy) or more (reluctant) character compared with its first
uncompromising attempt. The method is repeated until we either can match
everything or confirm that there’s no possible way to create a match.

Does it matter whether we use the greedy or reluctant approach? Well, the strings
that can be matched with greedy are also matched with reluctant, and vice versa.
However, when multiple matches are possible, greedy tracking sometimes will
choose a different match than reluctant tracking. These two approaches also differ in
performance. In some cases, reluctant is faster, while in other cases, greedy is. It’s a

85

question of how many backtrackings we must make. For finite automata, Mr.
Performance shudders at the mere mention of his foe: Mr. Backtracking.

No special symbol for reluctant quantifiers exists. Instead, we have a modifier
symbol—written as a question mark—that may be added to the right of any
quantifier. While * says “repeat as many times as possible,” *? says “repeat as few
times as possible.” What a great duo! Similarly, we may modify any other quantifier.

● Positive closure function with reluctant modifier: at least one, as few as
possible: +?

● Optional quantifier function with reluctant modifier: zero or one, preferably
zero: ??

● Generic quantifier function with reluctant modifier: between three and five
and as few as possible: {𝟹, 𝟻}?

Note that the question mark that modifies quantifiers isn’t the same question mark
that’s used as the optional quantifier function. They may even be used in conjunction
with each other, as ?? indicates above. It’s context dependent whether a question
mark represents the reluctant modifier or the optional quantifier function. Of course, in
some contexts, the question mark also can be a literal, that is, we want to match a
question mark in the input string.

Here are some quantifier examples with and without the reluctant modifier. The first
one is an improved solution to the div tag problem.

'<div>a</div>c<div>b</div>' \

.scan /<div>.*?<\/div>/

#=> ["<div>a</div>", "<div>b</div>"]

'aa'.match /a?/ #=> #<MatchData "a">

'aa'.match /a??/ #=> #<MatchData "">

'aaaaa'.match /a{2,4}/

#=> #<MatchData "aaaa">

at least 2, at most 4, as much as possible

'aaaaa'.match /a{2,4}?/

#=> #<MatchData "aa">

at least 2, at most 4, as little as possible

86

'aaaaa'.match /a{2,}/ #=> #<MatchData "aaaaa">

'aaaaa'.match /a{2,}?/ #=> #<MatchData "aa">

'aaaaa'.match /a{,4}/ #=> #<MatchData "aaaa">

'aaaaa'.match /a{,4}?/ #=> #<MatchData "">

Two Takeaways

● While quantifiers are typically greedy (matching as many repetitions as
possible), they can be made reluctant by adding a question mark ? to match
as few repetitions as possible.

● Reluctant quantifiers can affect performance and may lead to different
matches when multiple matches are possible.

87

