
This short excerpt is from Regular Expressions Machinery: The
Illustrated Guide by Staffan Nöteberg. You can find more information
or purchase an ebook copy at https://www.pragprog.com.

https://www.pragprog.com

Copyright © 2025 Rekursiv AB

All rights reserved. No part of this publication may be reproduced, adapted, or used to train
or test artificial intelligence systems without prior written consent from the author Staffan
Nöteberg or the publisher.

While every effort has been made to ensure the accuracy of the information contained
herein, the author and the publisher assumes no responsibility for any errors or omissions,
or for any damages resulting from the use of this publication.

To inquire about booking the author for podcasts, training sessions, and speaking
engagements at conferences, please contact him directly at staffan.noteberg@rekursiv.se

PDF ISBN: 978-91-989983-0-6

EPUB ISBN: 978-91-989983-1-3

Book Version: V1.0—January, 2025

PART II: Two Operations
and One Function

In Part I of this book (The Automaton), we observed that the same problem could be
expressed in a human-friendly way (a graph) and a computer-friendly way (a table).
We, the humans, are creative. We formulate new problems that we want to solve. On
the other hand, computers solve problems at a high speed, and they never make
mistakes—at least not if we implement the correct algorithms. How do we find a
notation that’s easy for people to express themselves with and also easy for
computers to interpret?

Directed graphs, that is, transition diagrams, give us a good overview, as long as they
don’t contain too many details. We can focus on a piece of the graph, and we may
also zoom out to see the big picture as an abstract description. When we walk
around in the graph, we’re in an area. Our brains thrive like a fish in water with this
way of presenting and digesting information.

The computer excels at having full control over every detail of a large amount of
data, as it doesn’t need any abstraction to understand the big picture. It just wants
deterministic instructions on how to behave in its current state. If we provide all
possible transitions in tabular form, the computer will remain happy, but for us
humans, it’s difficult to get an overview of a transition table. We will wonder what
problem this table is solving.

When it comes to details, the ultimate interface between humans and computers has
long proven to be text. Visual programming languages are launched recurrently in
our industry, but the market never takes off. We still must teach the computer all the
details about how it should behave. Too many details make the graphical programs
as difficult to interpret for us humans as they are for computers. Programming

39

languages such as C, Java, C#, Python, and Ruby are completely text-based and still
are uncrowned queens of expression for us programmers.

Where nothing else is said, examples are executed in Ruby. You may install Ruby
on your computer and then start IRB (Interactive Ruby Shell) in a terminal to try
out the code. You may also run IRB online without any installation.

Even a text-based programming language needs an effective and simple notation. In
this part of the book, we’ll see that regular expressions (one regex, many regexes) is
a language with only two operations and one function. Sounds powerful, doesn’t it?
Two operations and one function are sufficient to describe all the transition diagrams
and transition tables that can be constructed. It’s enough to describe every possible
DFA and NFA in text form.

40

https://www.ruby-lang.org/en/documentation/installation/
https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.google.com/search?q=irb+ruby+online

History of Regular Expressions

The regular expressions pioneers.

Regular expressions is a programming language with which we can specify a set of
strings. Supported by only two operations and one function, we can be very concise.
A non-concise alternative would be to list all the strings included in the set. Where
does this regular expressions language come from, why is it called regular, and how
does it differ from regex?

The story begins with a neuroscientist and a logician who together tried to
understand how the human brain could produce complex patterns using simple cells
that are bound together. In 1943, Warren McCulloch and Walter Pitts published “A
logical calculus of the ideas immanent in nervous activity” in the Bulletin of
Mathematical Biophysics 5:115–133. Although it was not the objective, it turned out
that this paper greatly influenced computer science in our time. In 1956,
mathematician Stephen Kleene took McCulloch and Pitts’ theories one step further. In
the paper “Representation of events in nerve nets and finite automata” in the Annals
of Mathematics Studies, Number 34, Kleene presented a simple algebra, and

41

https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://dl.acm.org/doi/book/10.5555/1096884
https://dl.acm.org/doi/book/10.5555/1096884

somewhere along the line, the terms regular sets and regular expressions were born.
As mentioned, Kleene’s algebra had only two operations and one function.

In 1968, Unix pioneer Ken Thompson published the article “Regular Expression Search
Algorithm” in Communications of the ACM (CACM), Volume 11. With code and prose,
he described a regular expression compiler that creates IBM 7094 object code.
Thompson’s efforts did not end there. He also implemented Kleene’s notation in the
editor QED. The value was that users could do advanced pattern matching in text
files. The same feature appeared later in the editor ed.

To search for a regular expression in ed, the user wrote 𝚐/<regular expression>/p.
The letter 𝚐 meant global search, and p meant print the result. The
command—g/re/p—resulted in the stand-alone program grep, released in the fourth
edition of Unix in 1973. However, grep didn’t have a complete implementation of
regular expressions, and it was not until 1979, in the seventh edition of Unix, when
we were blessed with Alfred Aho’s egrep (extended grep). Now the circle was
complete. The egrep program translated any regular expressions into a
corresponding DFA.

Larry Wall’s Perl programming language from the late 1980s helped regular
expressions become mainstream. Perl integrated regular expressions seamlessly,
even with regular expression literals. Perl also added new features to regular
expressions. The language was extended with abstractions, syntactic sugar, and also
some brand new features that may not even be possible to implement in finite
automata. This raises the question of whether modern regular expressions can be
called regular expressions. Perhaps we can override that discussion if we use the
term regex instead of regular expressions when we refer to the not-so-regular
regular expressions?

42

https://dl.acm.org/doi/10.1145/363347.363387
https://dl.acm.org/doi/10.1145/363347.363387
https://en.wikipedia.org/wiki/IBM_7090
https://en.wikipedia.org/wiki/QED_(text_editor)
https://en.wikipedia.org/wiki/Ed_(text_editor)
https://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Grep#Implementations

Two Takeaways

● Regular expressions stemmed from the work of Warren McCulloch and
Walter Pitts in 1943, who studied how the human brain produces complex
patterns with interconnected cells.

● The term "regular expressions" originated from Stephen Cole Kleene's work
in 1956, who built upon McCulloch and Pitts' theories to develop a simplified
algebra for describing languages.

43

Match One Character

An alphabet is a finite, nonempty set of symbols, that is, at least one symbol and a
limited number. Here are some examples of alphabets:

● The binary alphabet {0, 1} contains only two symbols: 1 and 0.
● The American Standard Code for Information Interchange (ASCII) contains

128 symbols, only 95 of which are printable. The others, such as Backspace
(ASCII 8), are also symbols in our definition.

● The set of 95 printable symbols in ASCII is also an alphabet.
● Unicode contains over 100,000 symbols that include Arabic, Chinese, Latin,

and many other types. However, even if it’s a very large number, it’s still a
finite number of symbols. Therefore, Unicode is an alphabet.

● The set of the Cyrillic symbols in Unicode is an alphabet.
● We can construct an alphabet comprising a green dot⬤ and a white dot◯,

that is, an alphabet comprising two symbols {⬤, ◯}, just like the binary
alphabet {0, 1}.

44

http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/ASCII
http://www.unicode.org
https://unicode-table.com/en/blocks/cyrillic/

Traditionally, a specific order of the symbols doesn’t make an alphabet unique. Thus,
{a, b} is the same alphabet as {b, a}. However, as we’ll see later in this book, order
is significant for defining ranges in modern regex.

Did you, by any chance, know that the word alphabet comes from alpha and beta,
the first two letters of the 3,000-year-old Phoenician alphabet, and that alpha
meant ox and beta meant house?

A string is a finite ordered sequence of symbols chosen from an alphabet. Here are
some examples of strings:

● 0110 and 1001 are two strings from the binary alphabet.
● The strings kadikoy and uskudar are constructed with symbols from the ASCII

alphabet.
● футбол is a string from the Cyrillic alphabet.
● اللوز is a string from the Arabic alphabet.
● From any alphabet, it’s possible to create an empty string, that is, a string

comprising zero symbols. By convention, we denote that string with the
character ε.

The same symbol can occur multiple times in a string, but the order is significant, for
example, gof isn’t the same string as fog.

A language is a countable set of strings from a fixed alphabet. Recall that the
alphabets are restricted to be finite. A language, however, may well include an
infinite number of strings. Here are some examples of languages:

● All binary numbers ending in 0, for example, 10, 100, 110, etc.
● All palindromes—strings that are the same forward and backward, like otto

and anna—constructed from ASCII symbols.
● All strings with an even number of symbols from Unicode.
● A finite set {dog, cat, bird}.
● An empty set, that is, a language with no strings. Such an alphabet is by

convention denoted as Ø.
● The language {ε}, which comprises only one symbol: the empty string ε.

(Note that {ε} is very different from Ø, for example in string cardinality.)

45

Our focus in this book is on regular expressions. Evidently. A regular expression is an
algebraic description of an entire language. Not all languages can be described using
regular expressions. For example, no regular expression—without non-regular
extensions—can describe the language comprising all palindromes created with
symbols from ASCII. However, I’ll try to convince you that regular expressions are
ridiculously easy to learn and amazingly powerful to use.

Regular expressions starts with two basic rules:

(1) Empty String Language. The empty string ε is a regular expression that
describes a language comprising only one string, which happens to be the empty
string.

(2) Single Symbol Language. If a symbol, a, is a member of an alphabet, then a is a
regular expression. It describes a language that has the string “a” as its only member.

That was easy, wasn’t it? In addition to these two basic rules, we have two operations
and one function that we’ll cover with another four rules in the next section. Out of
pure laziness, we have conventions for precedence between these operations and
the function. More on this later.

First, you should try the two basic rules in the Interactive Ruby Shell (IRB). Either you
install Ruby on your computer and start IRB in a shell, or you may use an online
version of IRB.

With IRB, we write regular expressions between two dashes. For example, you may
write the regular expression a as /a/. IRB can help us figure out whether a string is in
a language described by a particular regular expression:

'a'.match /a/ #=> #<MatchData "a">

string a matched by regex /a/

''.match /a/ #=> nil

empty string not matched by /a/

'b'.match /a/ #=> nil

string b not matched by /a/

'a'.match // #=> #<MatchData "">

46

https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/
https://www.google.com/search?q=irb+ruby+online
https://www.google.com/search?q=irb+ruby+online

string a not matched by empty regex ε

Only when IRB returns the entire string is it matched by the regular expression. The
number sign # (hash tag) and everything to the right of it is ignored by the computer.
We can put messages to humans there, for example what data we expect to match.

Two Takeaways

● A string is a finite sequence of symbols from an alphabet, and a language is
a set of strings.

● A regular expression is a way to describe a language algebraically

47

Four More Rules

Now that we have two basic rules, we’d like to add four more. We then can build
more advanced regular expressions recursively from very basic regular expressions.
The first three rules (№3–5) describe regular expressions’ only two necessary binary
operations and one and only necessary function. The fourth rule (№6) deals with
parentheses:

(3) Alternation. If p and q are regular expressions, then p|q also will be a regular
expression. The expression p|q matches the union of the strings matched by p and q.
Think of it as either p or q.

(4) Concatenation. If p and q are two regular expressions, then pq also will be a
regular expression. Note that the symbol for concatenation is invisible. Some
literature uses × for concatenation, for example, p×q. The expression pq denotes a
language comprising all strings with a prefix matched by p, followed by a suffix
matched by q—and nothing between the prefix and suffix.

48

(5) Closure. If p is a regular expression, then p* also will be a regular expression. This
is the closure of concatenation with the expression itself. The expression p* matches
all strings that may be divided into zero or more substrings, each of which is
matched by p.

(6) Parentheses. If p is a regular expression, then (p) will be a regular expression as
well, that is, we can enclose an expression in parentheses without altering its
meaning.

In addition to these rules, we’ll add some convenience rules for operator precedence
shortly. They’re not necessary, but allow us to write shorter and more readable
regular expressions. Quite soon, you’ll also see real regular expression examples
based on these two operations and one function. It might be difficult to imagine that
these six rules are sufficient for writing every possible regular expression in the
world.

Do you remember George Bernard Shaw’s quote “The golden rule is that there are no
golden rules”? What about Mark Twain’s “It is a good idea to obey all the rules when
you’re young just so you’ll have the strength to break them when you’re old”? This is
exactly how we should think. For now, these rules are all we need, but modern regex
automata contain powerful functions, for example, a back reference and
lookarounds. To implement these functions, we need more than these six rules, but
until we’re there, it’ll be very useful to think of regular expressions as a system
comprising only these six rules.

Thus, regular expression is a mathematical theory, and modern regex automata are
based on a super set of this theory. With the help of the theory, we can prove the
following:

● For each regular expression, we may construct at least one DFA and at least
one NFA, so that all three (regular expression, DFA, and NFA) solve the same
problem.

● For every finite automaton—deterministic (DFA) as well as non-deterministic
(NFA)—we may write a regular expression, so that both (automaton and
regular expression) solve the same problem.

49

https://www.gutenberg.org/ebooks/26107

Solving a problem here means determining whether a string is part of a language,
that is, a specific set of strings. The proofs mentioned here aren’t reproduced in this
book, but they’re easily found in every textbook on automata theory.

In summary, regardless of which format we start with—NFA, DFA, regular expression,
or state diagram— there is always an equivalent representation in all the other
formats. The beauty of this equivalence is that I can explain several key features of
regular expressions for you, with the help of graphs of finite automata. Furthermore,
in almost every mainstream programming language, there is a compiler that
translates our handwritten regular expressions into computer-friendly finite
automata, or possibly more advanced pushdown automata.

Two Takeaways

● In addition to the two basic rules for the empty string and single symbol
languages, regular expressions have two operations (alternation p|q and
concatenation p×q) and one function (closure p*).

● Parentheses can be used in regular expressions to group expressions and
alter the order of operations.

50

Get a Grip on the Regex Machinery
To effectively use regular expressions, you need to understand how the machinery
works under the hood. It’s about taking control of the search process, controlling
how the pattern is matched, and thus getting both faster and more accurate
results.

In this illustrated guide, you gain precisely that understanding.

You can even get started without any prior knowledge of regular expressions.
Before you know it, advanced tools like reluctant, lookbehind and
nondeterministic finite automata will be at your fingertips as you write efficient
and elegant regexes with ease.

This book presents complex concepts in a simple and visual way, with clear
examples and practical applications. Whether you are a programmer, data analyst,
or just want to get better at text processing, this book will take your knowledge to
the next level.

Staffan Nöteberg is a bestselling author passionate about helping people become
more efficient and focused. He is the author of these popular books:

● Pomodoro Technique Illustrated: The Easy Way to Do More in Less Time

● Monotasking: How to Focus Your Mind and Be More Productive

● Guiding Star OKRs: A New Approach to Setting and Achieving Goals

With a background in software development and an interest in productivity,
Staffan combines his expertise with an ability to explain complex topics in an
easy-to-understand way.

https://pragprog.com/titles/snfocus/pomodoro-technique-illustrated/
https://www.skyhorsepublishing.com/9781631585494/monotasking
https://pragprog.com/titles/snokrs/guiding-star-okrs

PART II: Two Operations
and One Function

In Part I of this book (The Automaton), we observed that the same problem could be
expressed in a human-friendly way (a graph) and a computer-friendly way (a table).
We, the humans, are creative. We formulate new problems that we want to solve. On
the other hand, computers solve problems at a high speed, and they never make
mistakes—at least not if we implement the correct algorithms. How do we find a
notation that’s easy for people to express themselves with and also easy for
computers to interpret?

Directed graphs, that is, transition diagrams, give us a good overview, as long as they
don’t contain too many details. We can focus on a piece of the graph, and we may
also zoom out to see the big picture as an abstract description. When we walk
around in the graph, we’re in an area. Our brains thrive like a fish in water with this
way of presenting and digesting information.

The computer excels at having full control over every detail of a large amount of
data, as it doesn’t need any abstraction to understand the big picture. It just wants
deterministic instructions on how to behave in its current state. If we provide all
possible transitions in tabular form, the computer will remain happy, but for us
humans, it’s difficult to get an overview of a transition table. We will wonder what
problem this table is solving.

When it comes to details, the ultimate interface between humans and computers has
long proven to be text. Visual programming languages are launched recurrently in
our industry, but the market never takes off. We still must teach the computer all the
details about how it should behave. Too many details make the graphical programs
as difficult to interpret for us humans as they are for computers. Programming

39

languages such as C, Java, C#, Python, and Ruby are completely text-based and still
are uncrowned queens of expression for us programmers.

Where nothing else is said, examples are executed in Ruby. You may install Ruby
on your computer and then start IRB (Interactive Ruby Shell) in a terminal to try
out the code. You may also run IRB online without any installation.

Even a text-based programming language needs an effective and simple notation. In
this part of the book, we’ll see that regular expressions (one regex, many regexes) is
a language with only two operations and one function. Sounds powerful, doesn’t it?
Two operations and one function are sufficient to describe all the transition diagrams
and transition tables that can be constructed. It’s enough to describe every possible
DFA and NFA in text form.

40

https://www.ruby-lang.org/en/documentation/installation/
https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.google.com/search?q=irb+ruby+online

History of Regular Expressions

The regular expressions pioneers.

Regular expressions is a programming language with which we can specify a set of
strings. Supported by only two operations and one function, we can be very concise.
A non-concise alternative would be to list all the strings included in the set. Where
does this regular expressions language come from, why is it called regular, and how
does it differ from regex?

The story begins with a neuroscientist and a logician who together tried to
understand how the human brain could produce complex patterns using simple cells
that are bound together. In 1943, Warren McCulloch and Walter Pitts published “A
logical calculus of the ideas immanent in nervous activity” in the Bulletin of
Mathematical Biophysics 5:115–133. Although it was not the objective, it turned out
that this paper greatly influenced computer science in our time. In 1956,
mathematician Stephen Kleene took McCulloch and Pitts’ theories one step further. In
the paper “Representation of events in nerve nets and finite automata” in the Annals
of Mathematics Studies, Number 34, Kleene presented a simple algebra, and

41

https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/warren-s-mcculloch-and-walter-pitts-a-logical-calculus-of-the-ideas-immanent-in-nervous-activity-bulletin-of-mathematical-biophysics-vol-5-1943-pp-115133/7DFDC43EC1E5BD05E9DA85E1C41A01BD
https://dl.acm.org/doi/book/10.5555/1096884
https://dl.acm.org/doi/book/10.5555/1096884

somewhere along the line, the terms regular sets and regular expressions were born.
As mentioned, Kleene’s algebra had only two operations and one function.

In 1968, Unix pioneer Ken Thompson published the article “Regular Expression Search
Algorithm” in Communications of the ACM (CACM), Volume 11. With code and prose,
he described a regular expression compiler that creates IBM 7094 object code.
Thompson’s efforts did not end there. He also implemented Kleene’s notation in the
editor QED. The value was that users could do advanced pattern matching in text
files. The same feature appeared later in the editor ed.

To search for a regular expression in ed, the user wrote 𝚐/<regular expression>/p.
The letter 𝚐 meant global search, and p meant print the result. The
command—g/re/p—resulted in the stand-alone program grep, released in the fourth
edition of Unix in 1973. However, grep didn’t have a complete implementation of
regular expressions, and it was not until 1979, in the seventh edition of Unix, when
we were blessed with Alfred Aho’s egrep (extended grep). Now the circle was
complete. The egrep program translated any regular expressions into a
corresponding DFA.

Larry Wall’s Perl programming language from the late 1980s helped regular
expressions become mainstream. Perl integrated regular expressions seamlessly,
even with regular expression literals. Perl also added new features to regular
expressions. The language was extended with abstractions, syntactic sugar, and also
some brand new features that may not even be possible to implement in finite
automata. This raises the question of whether modern regular expressions can be
called regular expressions. Perhaps we can override that discussion if we use the
term regex instead of regular expressions when we refer to the not-so-regular
regular expressions?

42

https://dl.acm.org/doi/10.1145/363347.363387
https://dl.acm.org/doi/10.1145/363347.363387
https://en.wikipedia.org/wiki/IBM_7090
https://en.wikipedia.org/wiki/QED_(text_editor)
https://en.wikipedia.org/wiki/Ed_(text_editor)
https://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Grep#Implementations

Two Takeaways

● Regular expressions stemmed from the work of Warren McCulloch and
Walter Pitts in 1943, who studied how the human brain produces complex
patterns with interconnected cells.

● The term "regular expressions" originated from Stephen Cole Kleene's work
in 1956, who built upon McCulloch and Pitts' theories to develop a simplified
algebra for describing languages.

43

Match One Character

An alphabet is a finite, nonempty set of symbols, that is, at least one symbol and a
limited number. Here are some examples of alphabets:

● The binary alphabet {0, 1} contains only two symbols: 1 and 0.
● The American Standard Code for Information Interchange (ASCII) contains

128 symbols, only 95 of which are printable. The others, such as Backspace
(ASCII 8), are also symbols in our definition.

● The set of 95 printable symbols in ASCII is also an alphabet.
● Unicode contains over 100,000 symbols that include Arabic, Chinese, Latin,

and many other types. However, even if it’s a very large number, it’s still a
finite number of symbols. Therefore, Unicode is an alphabet.

● The set of the Cyrillic symbols in Unicode is an alphabet.
● We can construct an alphabet comprising a green dot⬤ and a white dot◯,

that is, an alphabet comprising two symbols {⬤, ◯}, just like the binary
alphabet {0, 1}.

44

http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/ASCII
http://www.unicode.org
https://unicode-table.com/en/blocks/cyrillic/

Traditionally, a specific order of the symbols doesn’t make an alphabet unique. Thus,
{a, b} is the same alphabet as {b, a}. However, as we’ll see later in this book, order
is significant for defining ranges in modern regex.

Did you, by any chance, know that the word alphabet comes from alpha and beta,
the first two letters of the 3,000-year-old Phoenician alphabet, and that alpha
meant ox and beta meant house?

A string is a finite ordered sequence of symbols chosen from an alphabet. Here are
some examples of strings:

● 0110 and 1001 are two strings from the binary alphabet.
● The strings kadikoy and uskudar are constructed with symbols from the ASCII

alphabet.
● футбол is a string from the Cyrillic alphabet.
● اللوز is a string from the Arabic alphabet.
● From any alphabet, it’s possible to create an empty string, that is, a string

comprising zero symbols. By convention, we denote that string with the
character ε.

The same symbol can occur multiple times in a string, but the order is significant, for
example, gof isn’t the same string as fog.

A language is a countable set of strings from a fixed alphabet. Recall that the
alphabets are restricted to be finite. A language, however, may well include an
infinite number of strings. Here are some examples of languages:

● All binary numbers ending in 0, for example, 10, 100, 110, etc.
● All palindromes—strings that are the same forward and backward, like otto

and anna—constructed from ASCII symbols.
● All strings with an even number of symbols from Unicode.
● A finite set {dog, cat, bird}.
● An empty set, that is, a language with no strings. Such an alphabet is by

convention denoted as Ø.
● The language {ε}, which comprises only one symbol: the empty string ε.

(Note that {ε} is very different from Ø, for example in string cardinality.)

45

Our focus in this book is on regular expressions. Evidently. A regular expression is an
algebraic description of an entire language. Not all languages can be described using
regular expressions. For example, no regular expression—without non-regular
extensions—can describe the language comprising all palindromes created with
symbols from ASCII. However, I’ll try to convince you that regular expressions are
ridiculously easy to learn and amazingly powerful to use.

Regular expressions starts with two basic rules:

(1) Empty String Language. The empty string ε is a regular expression that
describes a language comprising only one string, which happens to be the empty
string.

(2) Single Symbol Language. If a symbol, a, is a member of an alphabet, then a is a
regular expression. It describes a language that has the string “a” as its only member.

That was easy, wasn’t it? In addition to these two basic rules, we have two operations
and one function that we’ll cover with another four rules in the next section. Out of
pure laziness, we have conventions for precedence between these operations and
the function. More on this later.

First, you should try the two basic rules in the Interactive Ruby Shell (IRB). Either you
install Ruby on your computer and start IRB in a shell, or you may use an online
version of IRB.

With IRB, we write regular expressions between two dashes. For example, you may
write the regular expression a as /a/. IRB can help us figure out whether a string is in
a language described by a particular regular expression:

'a'.match /a/ #=> #<MatchData "a">

string a matched by regex /a/

''.match /a/ #=> nil

empty string not matched by /a/

'b'.match /a/ #=> nil

string b not matched by /a/

'a'.match // #=> #<MatchData "">

46

https://wikipedia.org/wiki/Interactive_Ruby_Shell
https://www.ruby-lang.org/en/documentation/installation/
https://www.ruby-lang.org/en/documentation/installation/
https://www.google.com/search?q=irb+ruby+online
https://www.google.com/search?q=irb+ruby+online

string a not matched by empty regex ε

Only when IRB returns the entire string is it matched by the regular expression. The
number sign # (hash tag) and everything to the right of it is ignored by the computer.
We can put messages to humans there, for example what data we expect to match.

Two Takeaways

● A string is a finite sequence of symbols from an alphabet, and a language is
a set of strings.

● A regular expression is a way to describe a language algebraically

47

Four More Rules

Now that we have two basic rules, we’d like to add four more. We then can build
more advanced regular expressions recursively from very basic regular expressions.
The first three rules (№3–5) describe regular expressions’ only two necessary binary
operations and one and only necessary function. The fourth rule (№6) deals with
parentheses:

(3) Alternation. If p and q are regular expressions, then p|q also will be a regular
expression. The expression p|q matches the union of the strings matched by p and q.
Think of it as either p or q.

(4) Concatenation. If p and q are two regular expressions, then pq also will be a
regular expression. Note that the symbol for concatenation is invisible. Some
literature uses × for concatenation, for example, p×q. The expression pq denotes a
language comprising all strings with a prefix matched by p, followed by a suffix
matched by q—and nothing between the prefix and suffix.

48

(5) Closure. If p is a regular expression, then p* also will be a regular expression. This
is the closure of concatenation with the expression itself. The expression p* matches
all strings that may be divided into zero or more substrings, each of which is
matched by p.

(6) Parentheses. If p is a regular expression, then (p) will be a regular expression as
well, that is, we can enclose an expression in parentheses without altering its
meaning.

In addition to these rules, we’ll add some convenience rules for operator precedence
shortly. They’re not necessary, but allow us to write shorter and more readable
regular expressions. Quite soon, you’ll also see real regular expression examples
based on these two operations and one function. It might be difficult to imagine that
these six rules are sufficient for writing every possible regular expression in the
world.

Do you remember George Bernard Shaw’s quote “The golden rule is that there are no
golden rules”? What about Mark Twain’s “It is a good idea to obey all the rules when
you’re young just so you’ll have the strength to break them when you’re old”? This is
exactly how we should think. For now, these rules are all we need, but modern regex
automata contain powerful functions, for example, a back reference and
lookarounds. To implement these functions, we need more than these six rules, but
until we’re there, it’ll be very useful to think of regular expressions as a system
comprising only these six rules.

Thus, regular expression is a mathematical theory, and modern regex automata are
based on a super set of this theory. With the help of the theory, we can prove the
following:

● For each regular expression, we may construct at least one DFA and at least
one NFA, so that all three (regular expression, DFA, and NFA) solve the same
problem.

● For every finite automaton—deterministic (DFA) as well as non-deterministic
(NFA)—we may write a regular expression, so that both (automaton and
regular expression) solve the same problem.

49

https://www.gutenberg.org/ebooks/26107

Solving a problem here means determining whether a string is part of a language,
that is, a specific set of strings. The proofs mentioned here aren’t reproduced in this
book, but they’re easily found in every textbook on automata theory.

In summary, regardless of which format we start with—NFA, DFA, regular expression,
or state diagram— there is always an equivalent representation in all the other
formats. The beauty of this equivalence is that I can explain several key features of
regular expressions for you, with the help of graphs of finite automata. Furthermore,
in almost every mainstream programming language, there is a compiler that
translates our handwritten regular expressions into computer-friendly finite
automata, or possibly more advanced pushdown automata.

Two Takeaways

● In addition to the two basic rules for the empty string and single symbol
languages, regular expressions have two operations (alternation p|q and
concatenation p×q) and one function (closure p*).

● Parentheses can be used in regular expressions to group expressions and
alter the order of operations.

50

