
Extracted from:

Beyond Legacy Code
Nine Practices to Extend the Life (and Value) of Your

Software

This PDF file contains pages extracted from Beyond Legacy Code, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Beyond Legacy Code
Nine Practices to Extend the Life (and Value) of Your

Software

David Scott Bernstein

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-079-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—June 17, 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 4

The Nine Practices
Building software is complex—perhaps the most complex activity that humans
can engage in. Writing software is a discipline that requires a range of skills
and practices to accomplish successfully.

It’s easy to get it wrong because the virtual world is so different from the
physical world. In the physical world, we can easily understand what it takes
to build something but in the virtual world this can be much more difficult
to see and understand. The software development profession is just starting
to figure things out, much like where the medical profession was a few hun-
dred years ago.

It was less than two hundred years ago that the medical community laughed
at Ignaz Semmelweis for proposing that microscopic creatures could cause
disease. How could something as trivial as washing your hands before surgery
make the difference between life and death to your patient?

The medical community held this view in part because germ theory did not
exist yet and partly because they were at that time actively trying to dispel
the myth that invisible spirits caused disease (often truth and myth share a
lot in common). Therefore, the practice of washing your hands before perform-
ing surgery wasn’t considered essential.

Battlefield surgeons in the Civil War knew about germ theory but they argued
they had no time to sterilize their instruments. If a soldier needed an ampu-
tation they didn’t have time to wash the saw. But when the medical commu-
nity looked at the success rates of battlefield surgery they discovered that in
many cases more men died of infection and disease in the Civil War than died
on the battlefield, so medicine had to rethink its position.

When we understand germ theory, we understand why we have to wash all
the instruments. This is the difference between following a practice (the act

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

of sterilizing a specific instrument) and following a principle (the reason for
sterilizing all instruments).

And the thing about the following software development practices, just like
sterilization, is that we have to get it all right for any of it to work. If we happen
to miss one of those things… one germ can kill your patient, and one bug can
kill your application. And in this we require discipline.

I don’t believe there is one right way to develop software just as there’s no
one right way to heal a patient, create art, or build a bridge. I don’t believe
in the “one true way” of anything, but especially not for programming.

Still, having worked with thousands of developers, I’ve seen first-hand how
we constantly reinvent the wheel. Software development has attracted a range
of people from all backgrounds, and that has brought many fresh perspectives
to creating software. At the same time, the huge diversity among developers
can be a real problem. Enterprise software development involves enormous
attention to detail and a lot of coordination among those involved. We must
have some shared understanding, a common set of practices, along with a
shared vocabulary. We must arrive at a common set of goals and be clear
that we value quality and maintainability.

Some developers are more effective than others, and I’ve spent most of my
life trying to discover what makes these extraordinary developers so good. If
we understand what they understand, learn some principles and practices,
then we can achieve similar extraordinary results.

But where to begin?

Software design is a deep and complex subject and to do it justice requires
a great deal of background theory that would need several books to explain.
Furthermore, some key concepts are not yet well understood among all
developers and many of us are still struggling to understand the context for
software development.

In many ways, legacy code has come about because we’ve carried the notion
that the quality of our code doesn’t matter—all that matters is that software
does what it’s supposed to do.

But this is a false notion. If software is to be used it will need to be changed,
so it must be written to be changeable. This is not how most software has
been written. Most code is intertwined with itself so it’s not independently
deployable or extendable and that makes it expensive to maintain. It works
for the purpose it was intended for, but because of the way it was written it’s

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

hard to change, so people hack away at it, making it even harder and more
costly to work with in the future.

We want to drop the cost of ownership of software. According to Barry Boehm1

of the University of Southern California, it often costs 100 times more to find
and fix a bug after delivery than it would cost during requirements and design.
We have to find ways to drop the cost of supportability by making code easier
to work with. If we want to drop the cost of ownership for software then we
must pay attention to how we build it.

What Experts Know
Experts organize their knowledge in specific ways. They often have their own
vocabulary to describe their key distinctions. They use metaphor and analogy,
and have formed key beliefs around their experiences. Their context for
understanding is different from the rest of us.

All of the techniques experts use are learnable skills. This means that when
you understand what experts do and do what they do, you’re likely to get the
same results.

Expert software developers, the ones who are getting not just incrementally
better but hugely better results, think about software development differently
than the rest of us. They pay attention to technical practices and code quality.
They understand what’s important and what’s not.

Most importantly, expert software developers hold themselves to higher
standards than the rest of us.

I was surprised to find that the best developers I know are also the neatest.
I figured fast coders had to be sloppy coders, but what I discovered was just
the opposite. The fastest programmers I’ve met paid particular attention to
keeping their code easy to work with. They don’t just declare instance variables
at the top of their classes, they list them in alphabetical order (or however
else it makes sense), they constantly rename methods and move them around
until their right home is found, and they immediately delete dead code that’s
not being used.

Even after noticing this correlation between these fast coders and how neat
and tidy their code was, it took me a while to recognize the causal relationship
between these two things. These people weren’t faster in spite of keeping code

1. Boehm, Barry. Basili, Victor R. “Software Defect Reduction Top 10 List.” Software
Management, January 2001

• Click HERE to purchase this book now. discuss

What Experts Know • 5

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

quality high, they were faster because they kept their code quality high.
Realizing this affects how we think about developing software.

Most people recognize that a well thought out approach to solving a problem
can pay back over the long term. What most people don’t realize is the payback
is usually much faster than expected. In the physical world we recognize
quality as a desirable attribute that we’re willing to pay more for. Higher
quality physical things tend to last longer and are therefore more expensive.
But the virtual world is different.

In the virtual world, a focus on quality is always less costly to execute in the
long term and often also in the short term. This doesn’t mean developers
shouldn’t make compromises at times, but when they do they should also
recognize the price they’ll pay every time they’ll have to go back and work
with poor code. If that price is high then they may want to go back and clean
up the code before making further enhancements.

Business takes a cost-benefit approach and software should be no different.
Like any asset, software must be maintained so that it doesn’t become a lia-
bility.

Shu-Ha-Ri
Mastery involves more than skill and ability. The Japanese martial art Aikido
defines three stages of mastery: Shu, Ha, and Ri.

Shu is the form, the explicit knowledge. “Wax-on, wax-off” from the movie The
Karate Kid is an example of the Shu stage of learning. Daniel, the young dis-
ciple in that movie, was told to wax cars with a circular movement. He wasn’t
told why or how it would prepare him to reach his goals. Once he mastered
the form he was shown why.

Often, people learn Agile as a set of rules, as do’s and don’ts. That is just the
first stage of learning, yet many people feel that once they learn some rules
they’re ready to do Agile.

But complex activities, like developing software, are hard to pin down with
rules. There’s a lot of contraindications in software where the best approach
in one situation could be a bad approach in another situation. As a result,
there’s typically a long learning curve to become a software developer.

The reason one starts with Shu is that the theory behind the practices isn’t
obvious. In martial arts, to defeat your opponent you must do more than
understand theory, you must put theory into practice. In Aikido, this is called
Ha. The same thing is true in software development. To be successful, we

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

must know the theories, the principles underlying the practices, in order to
put the practices to good use.

You can’t learn Ha prescriptively, as a set of rules. It has to come from expe-
rience but it is possible to learn some from other people’s experiences.

Once you’ve used the practices, understand the underlying theory at a deep
level, then practice and theory begin to dissolve and we approach the highest
level of mastery in Aikido, Ri. This is the realm of true mastery that can only
be obtained through ongoing study.

In his book Outliers [Gla08], Malcolm Gladwell suggests that after 10,000
hours of practice we become natural in a domain that requires intellectual
rigor. We no longer have to think about it because it’s almost second nature.
If truly mastering any complex activity takes about 10,000 hours then software
development is no exception.

Pablo Picasso understood this. He learned the rules of painting so he could
break them. He created paintings unlike anyone who came before him, but
few people know that Picasso was trained as a classical painter. He could
paint a painting in the style of the classical masters and spent most of his
life acquiring those skills. But he wasn’t satisfied. He went on to transcend
those skills and arrive at something else. To break the rules and break new
ground, we first have to master the rules.

The same is true with software development. There are a lot of rules and
constraints when building software and there’s also technique. Like any other
human creation, a computer program is a model of something. We’re used to
physical models, but programs can also be behavioral models.

In order to accurately model something we must first understand what it is
we’re modeling and we must also understand what modeling skills or tech-
niques are available to us. I find it useful to break out these techniques into
two categories: principles and practices.

First Principles
First principles were originally described by Marcus Aurelius, when he dis-
cussed the Golden Rule, which states “Do unto others as you’d have them
do unto you.” The reason the Golden Rule is a first principle is that much of
our law, our society, even our culture is based on that one simple statement.
You can infer other principles from first principles.

The Golden Rule is an overarching first principle in the law. It’s foundational
to the pursuit of justice. Consider what the law would be like without the

• Click HERE to purchase this book now. discuss

First Principles • 7

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

Golden Rule, if it were every person for themselves. Understanding and
agreeing to the right principles is central to the success of any discipline.

Software development doesn’t yet have the equivalent of the Golden Rule or
the Hippocratic Oath. We’re still figuring out what’s important and what’s
unimportant, what we should pay attention to and what we should ignore.
This is to be expected from such a young field and one so different from every
other field of study. But we are starting to establish some principles for
developing software.

An example of a first principle in software development is the Single Respon-
sibility Principle2 that states “there should never be more than one reason for
a class to change.”

While this seems like a simple statement, it carries with it a great deal of
weight. Since classes act as templates for the objects in a system, it means
that we should design our classes so that they represent a single thing. This
implies a lot. It implies we’ll have lots of little classes in the system and each
one will be focused on fulfilling a single responsibility.

By narrowly focusing a single responsibility for a class we limit how that
responsibility can interact with other classes in the system. This makes it
easier to test, find bugs, and extend in the future. The Single Responsibility
Principle guides developers to design systems that are well partitioned and
modular.

Another example of a first principle in software development is the Open-
Closed Principle stated by Bertrand Meyer in his book Object-Oriented Software
Construction [Mey97], “software entities (classes, modules, functions, etc.)
should be open for extension, but closed for modification.”

This means we should design systems so they can easily be extended without
changing much existing code. When I ask developers why the Open-Closed
Principle is important they immediately know why, because changing existing
code is often harder and more error-prone than writing new code. When
developers understand and value the Open-Closed Principle they tend to write
more maintainable code that costs less to extend later.

Principles are very powerful but they’re not actionable. Principles tell you
what to do but not how to do it. In software, there are many ways to achieve
“Open-Closed-ness” in code. It would drive us toward cohesively building
objects, programming to abstractions, and keeping behaviors decoupled. It’s

2. http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

• 8

• Click HERE to purchase this book now. discuss

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

important to note that these characteristics are side-effects of trying to achieve
the principle.

Likewise, there are many ways to achieve the Single Responsibility Principle.
Following this principle would drive developers to do things like calling out
more of the entities in the problem domain, isolating behaviors, and making
the system more modular. All of these things help build more resilient archi-
tectures.

Principles often go unstated. Developers may have a vague awareness of what
they’re striving for, but often don’t have it clearly articulated in their own
minds. It’s helpful to think about principles as the overarching wisdom that
helps guide us to do the right things.

To Be a Principle
Principles can be crisp and clearly defined or they can be vague and unartic-
ulated. Whether stated elegantly or not, principles point us in the right
direction and take us closer to the true nature of what the principle applies
to. Principles may give us insight or just be good advice. And by “us” I mean
not just software developers but everyone those developers might come in
contact with—everyone on and around a software development team.

Principles help us generalize about a thing. They help us organize our
knowledge. Not all principles are equal. Some are purer, more basic than
others, and as we saw, principles from which you can infer other principles
are called first principles.

I think of principles as lofty goals. They’re things that we want to strive for
because we know they’re good and virtuous. We also know that while principles
present worthy goals, they’re not always achievable. In software, principles
represent overarching advice that helps developers build better software.

To Be a Practice
Principles are important but principles alone are not enough. We also need
ways of achieving principles in practical situations and that’s what practices
are for.

I use strict criteria for defining a practice. In order for something to be a
practice it must:

• provide value at least most of the time,
• be easy to learn and easy to teach others,

• Click HERE to purchase this book now. discuss

To Be a Principle • 9

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

• be simple to do—so simple, in fact, that you can do it without thinking
about it.

When a practice fulfills these three conditions then it can easily propagate
among a team and its benefits compound. You can just do the practice and
it automatically saves time and effort on an ongoing basis.

The nine practices in this book represent a core set of high value practices
that are often misunderstood and misapplied but hold the key to sustainable
productivity. And all of them are huge time savers. I’m not about giving
developers more work to do. They’re already too busy as it is. The practices
I advocate developers adopt save them time both in the short term and the
long term. They help developers build focused, testable behaviors.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dblegacy
http://forums.pragprog.com/forums/dblegacy

