
Extracted from:

Rails, Angular, Postgres,
and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap
, published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Rails, Angular, Postgres,
and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-126-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—July 29, 2015

https://pragprog.com
rights@pragprog.com

Prevent Bad Data Using Check Constraints
If you done any database work at all, you’re no-doubt familiar with a “not
null” constraint that prevents inserting null into a column of the database.

CREATE TABLE people (
id INT NOT NULL,
name VARCHAR(255) NOT NULL,
birthdate DATE NULL

);

In this table,id and name may not be NULL, however birthdate may be. Postgres
takes the “null constraint” concept much further by allowing arbitrary con-
straints on fields. Postgres also has support for regular expressions. This
means we can create a constraint on our email field that requires its value to
match the same regular expression we used in our Rails code. This would
prevent non-company email addresses from being inserted into the table
entirely.

First, we’ll create a new migration where we can add this constraint.

> bundle exec rails g migration add-email-constraint-to-users
invoke active_record
create db/migrate/20150303133619_add_email_constraint_to_users.rb

The DSL for writing Rails migrations doesn’t provide any means of creating
this constraint, so we have to do it in straight SQL. Although Postgres Data
Definition Language (DDL) looks different from what we normally use in our
migrations, it’s still relatively straightforward and well documented online1.

The basic structure of our constraint is that we want to “alter” the USERS to
“add” a constraint that will “check” the email column for invalid values. Here’s
what our migration will look like (See Why aren't we using change in our Rails
migrations?, on page 4 for why we are using the older up and down methods).

login/add-postgres-constraint/shine/db/migrate/20150303133619_add_email_constraint_to_users.rb
class AddEmailConstraintToUsers < ActiveRecord::Migration

def up
execute %{
ALTER TABLE

users
ADD CONSTRAINT

email_must_be_company_email
CHECK (email ~* '[A-Za-z0-9._%-]+@example.com')

}
end

1. http://www.postgresql.org/docs/9.4/static/ddl-constraints.html

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang/code/login/add-postgres-constraint/shine/db/migrate/20150303133619_add_email_constraint_to_users.rb
http://www.postgresql.org/docs/9.4/static/ddl-constraints.html
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

def down
execute %{
ALTER TABLE

users
DROP CONSTRAINT

email_must_be_company_email
}

end
end

The ~* operator is how Postgres does regular expression matching. Therefore
this code means that the email column’s value must match the regular
expression we’ve given or the insert or update command will fail. The regular
expression is more or less identical to the one we used when configuring
Devise.

Why aren’t we using change in our Rails migrations?

Rails 3.1 introduced the concept of reversible migrations via the method change in
migrations DSL. The Rails authors realized that most implementations of down were
to reverse what was done inside up and Rails could figure out how to reverse the code
in the up method automatically.

In order to make this work, programmers would need to constrain the contents of
the change method to only those migration methods that Rails knows how to reverse,
which are itemized in ActiveRecord::Migration::CommandRecordera.

In most of the migrations we’ll write in this book, we aren’t using those methods, and
are typically just using execute, because we need to run Postgres-specific commands.
We could work within the Reversible Migrations framework by using reversible, but the
resulting code is somewhat clunky:

class AddEmailConstraintToUsers < ActiveRecord::Migration
def change
reversible do |direction|

direction.up {
execute %{

...
}

}
direction.down {

execute %{
...

}
}

end
end

end

Since up and down aren’t deprecated, it ends up being easier to stick with the older
syntax for the types of migrations we’ll be writing.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

a. http://api.rubyonrails.org/classes/ActiveRecord/Migration/CommandRecorder.html

Let’s see it in action. First we’ll run our migrations (if you experience a problem
doing this see Migrations Failing Because of Existing Data?, on page 5).

> bundle exec rake db:migrate
== 20150303133619 AddEmailConstraintToUsers: migrating ==================
-- execute("

ALTER TABLE
users

ADD CONSTRAINT
email_must_be_company_email

CHECK (email ~* '[A-Za-z0-9._%-]+@example.com')
;

")
-> 0.0012s

== 20150303133619 AddEmailConstraintToUsers: migrated (0.0013s) ========

Migrations Failing Because of Existing Data?

If you ran the migrations and saw something like the error below, you’ll need to do
a bit more work to apply this change.

> bundle exec rails db:migrate
ActiveRecord::StatementInvalid: PG::CheckViolation: ERROR:

check constraint "email_must_be_company_email" is violated by some row:
ALTER TABLE

users
ADD CONSTRAINT

email_must_be_company_email
CHECK (email ~* '[A-Za-z0-9._%-]+@example.com')
;

This means that at least one row in your development database has a value for the
email column that violates our new constraint. Postgres is refusing to apply the con-
straint because it doesn’t know what to do.

In your development environment, you can easily change or remove those rows that
violate the constraint. If you were doing this to an active, production dataset, you
would not have that luxury. You would need to get more creative. There are several
ways of handling this.

• Create a migration that deletes all users using a bad email address. This is
drastic, but would work.

• Create a migration to assign bogus company email addresses to the existing bad
accounts. This would prevent those users logging in but maintain their history.
You could correct the accounts manually later on, but the constraint would be
satisfied.

• Click HERE to purchase this book now. discuss

Prevent Bad Data Using Check Constraints • 5

http://api.rubyonrails.org/classes/ActiveRecord/Migration/CommandRecorder.html
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

• You could also do something more complex where you demarcate active users
with a new field, and prevent inactive users from logging in. Your check constraint
could then only check for active users, e.g. active = true AND email ~* '[A-Za-z0-9._%-
]@example.com'.

In any case, if you are adding constraints to a running, production system, you’ll
have to be more careful.

With the migration applied, let’s see how it works. First, we’ll insert a user
whose email is on our company’s domain.

> bundle exec rails dbconsole
shine_development> INSERT INTO

users (
email,
encrypted_password)

VALUES (
'foo@example.com',
'$abcd'

);
INSERT 0 1

This works as expected. Now let’s try to insert a user using a different domain.

shine_development> INSERT INTO
users (
email,
encrypted_password)

VALUES (
'foo@bar.com',
'$abcd'
);

ERROR: new row for relation "users" violates
check constraint "email_must_be_company_email"

DETAIL: Failing row contains (4,
foo@bar.com,
$abcd,
null,
null,
null,
0,
null,
null,
null,
null,
null,
null).

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

We can see that Postgres will refuse to allow invalid data into the table (and
that we get a pretty useful error message as well). This means that a rogue
application, bug in our code, or even a developer at a production console will
not be able to allow access to any user who doesn’t have a company email
address.

Given how little effort this was, and the piece of mind it gives us, it’s a no-
brainer to add this level of security. Postgres makes it simple, meaning the
cost of securing our website is low.

There is one last thing we’ll need to change, because we’re using a feature
that’s Postgres-specific. By default, Rails stores a snapshot of the database
schema in db/schema.rb, which is a Ruby source file using the DSL for Rails
migrations. Rails creates this by examining the database schema and creating
what is essentially a single migration, in Ruby, to create the schema from
scratch. This is what tests uses to create a fresh database.

The problem is that Rails doesn’t know about check constraints, so the one
we just added won’t be present in db/schema.rb. This is easily remedied by telling
Rails to use SQL, rather than Ruby, for storing the schema. We can do this
by adding one line to config/application.rb

login/add-postgres-constraint/shine/config/application.rb
config.active_record.schema_format = :sql

We’ll then need to remove the old db/schema.rb file, create db/structure.sql by run-
ning migrations and finally reset our test database by dropping it and recre-
ating it. We can do all this with rake.

> rm db/schema.rb
> bundle exec rake db:migrate
> RAILS_ENV=test bundle exec rake db:drop
> RAILS_ENV=test bundle exec rake db:create

• Click HERE to purchase this book now. discuss

Prevent Bad Data Using Check Constraints • 7

http://media.pragprog.com/titles/dcbang/code/login/add-postgres-constraint/shine/config/application.rb
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

