
Extracted from:

Rails, Angular, Postgres,
and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap
, published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Rails, Angular, Postgres,
and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-126-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—July 29, 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 1

Introduction
Think about what part of an application you are most comfortable working
with. If you are a Rails developer, there’s a good chance you prefer the back-
end, the Ruby code that powers the business logic of your application. What
if you felt equally comfortable working with the database, such as tweaking
queries and using advanced features of your database system? What if you
were also comfortable working with the JavaScript and CSS necessary to
make dynamic, usable, attractive user interfaces?

If you had that level of comfort at every level of the application stack, you
would possess great power as a developer to quickly produce high-quality
software. Your ability to solve problems would not be restricted by the tools
available via a single framework, nor would you be at the mercy of hard-to-
find specialists to help you with what are, in reality, simple engineering tasks.

As a Rails developer, you are encouraged by the framework not to peer too
closely into the database. Rails steers you away from JavaScript frameworks
in favor of its sprinkling approach, where content is all rendered server-side.
This book is going to open your eyes to all the things you can accomplish
with your database, and set you on a path that includes JavaScript frame-
works. With Rails acting as the foundation of what you do, you’re going to
learn how to embrace all other parts of the application stack.

The Application Stack
Many web applications—especially those built with Ruby on Rails—use a
layered architecture that is often refered to as a stack, since most diagrams
(like the following one) depict the layers as stacked blocks.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Rails represents the middle of the stack, and is called middleware. This is
where the core logic of your application lives. The bottom of the stack—the
data store—is where the valuable data saved and manipulated by your
application lives. This is often a Relational Database Management System or
RDBMS. The top of the stack is the user interface. In a web application, this
is HTML, CSS, and JavaScript served to a browser.

Each part of the stack plays a crucial role in making software valuable. The
data store is the canonical location of any organization’s most important
asset—its data. Even if your organization lost all of its source code, as long
as it retained its data, it could survive. Losing all of the data, however, would
be catastrophic.

The top of the stack is also important, as it’s the way the users view and enter
data. To the users, the user interface is the database. The difference between
a great user interface and a poor one can be the difference between happy
users and irritated users, accurate data and unreliable data, a successful
product and a dismal failure.

What’s left is the part of the stack where most developers feel most comfort-
able: the middleware. Poorly-constructed middleware is hard to change,
meaning the cost of change is high, and thus the ability of the organization
to respond to changes is more difficult.

Each part of the stack plays an important role in making a piece of software
successful. As a Rails developer, you have amassed many techniques for
making the middleware as high quality as you can. Rails (and Ruby) makes
it easy to write clean, maintainable code.

Digging deeper into the other two parts of stack will have a great benefit for
you as a developer. You’ll have more tools in your toolbox, making you more
effective. You’ll also have a much easier time working with specialists, when
you do have access to them, since you’ll have a good grasp of both the
database and the front-end. That’s what you’ll learn in this book. When you’re
done, you’ll have a holistic view of application development, and you’ll have
a new and powerful set of tools to augment your knowledge of Rails. With

Chapter 1. Introduction • 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

this holistic view, you can build seemingly complex features easily, sometimes
even trivially.

We’ll learn PostgreSQL, AngularJS and Bootstrap, but you can apply many of
the lessons here to other data stores, JavaScript libraries, and CSS frame-
works. Outside of seeing just how powerful these specific tools can be, you’re
going to be emboldened to think about writing software beyond what is pro-
vided by Rails.

PostgreSQL, Angular, and Bootstrap: The Missing Parts
of Our Stack
If all you’ve done with your database is create tables, insert data, and query
it, you’re going to be excited when you see what else you can do. Similarly, if
all you’ve done with your web views is sprinkle some jQuery calls to your
server-rendered HTML, you’ll be amazed at what you can do with very little
code when you have a full-fledged JavaScript framework. Lastly, if you’ve
been hand-rolling your own CSS, a framework like Bootstrap will make your
life so much simpler, and your views look and feel so much better.

In this book, we’re going to focus on PostgreSQL as our data store—the bottom
of the stack—and AngularJS with Bootstrap as our front-end—the top of the
stack. Each of these technologies are widely used and very powerful. You’re
likely to encounter them in the real world, and they both underscore the sorts
of features you can use to deliver great software outside of what you get with
Rails.

With these chosen technologies, our application stack looks like so:

In each chapter, we’ll highlight the parts of the stack we’ll be focusing on,
and calling out the different aspects of these technologies we’ll be learning.
Not every chapter will focus on all parts of the stack, so at the start of each
chapter, you’ll see a roadmap like this of what we’ll be learning.

• Click HERE to purchase this book now. discuss

PostgreSQL, Angular, and Bootstrap: The Missing Parts of Our Stack • 3

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Let’s get a taste of what each has to offer, starting with PostgreSQL.

PostgreSQL
PostgreSQL (or simply Postgres) is an open-source SQL database released in
1997. It supports many advanced features not found in other popular open-
source databases such as MySQL1 or commercial databases such as Microsoft
SQL Server2. Here are some of the features we’ll learn about (including how
to use them with Rails):

Check Constraints You can create highly complex constraints on your table
columns beyond what you get with not null. For example, you can require
that a user’s email address be on a certain domain (which we’ll see in
Chapter 3, Secure the Login Database with Postgres Constraints, on page
?), that the state in a U.S. address be written exactly as two upper-case
characters, or even that the state in the address must already be on a list
of allowed state codes.

While you can do this with Rails, doing it in the database layer means
that no bug in your code, no existing script, no developer at a console,
and no future program can put bad data into your database. This sort of
data integrity just isn’t possible with Rails alone.

Advanced Indexing In many database systems, you can only index the values
in the columns of the database. In Postgres, you can index the transformed
values. For example, you can index the lower-cased version of someone’s
name, so that a case-insensitive search is just as fast as an exact-match
search. We’ll see this in Chapter 4, Use Fast Queries with Advanced
Postgres Indexes, on page ?.

Materialized Views A database view is a logical table based a SELECT statement.
In Postgres a materialized view is a view whose contents are stored in

1. https://www.mysql.com/
2. http://www.microsoft.com/en-us/server-cloud/products/sql-server/

Chapter 1. Introduction • 4

• Click HERE to purchase this book now. discuss

https://www.mysql.com/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

backing table—accessing a materialized view won’t run the query again
like it would in a normal view. We’ll use one in Chapter 10, Cache Complex
Queries Using Materialized Views, on page ?.

Advanced Data Types Postgres has support for enumerated types, arrays,
and dictionaries (called HSTOREs). In most database systems, you have to
use separate tables to model these data structures.

Free-form JSON…that’s indexed Postgres supports a JSON data type, allowing
you to store arbitrary data in a column. This means you can use Postgres
as a document data store, or for storing data that doesn’t conform to a
strong schema (something you’d otherwise have to use a different type of
database for). And, by using the JSONB data type, the JSON fields can be
indexed, just like a structured table’s fields.

Although you can serialize hashes to JSON in Rails using the TEXT data
type, you can’t query it, and you certainly can’t index it. JSONB fields can
interoperate with many systems other than Rails, and provide great per-
formance.

AngularJS
AngularJS3 (or just Angular) is a JavaScript Model-View-Controller (MVC)
framework created and maintained by Google (Angular bills itself as a Model-
View-Whatever framework, but for this book, the Whatever will be a controller).
Angular treats your view not as a static bit of HTML, but as a full-blown
application. By adopting the mindset that your front-end is a dynamic, con-
nected interface, and not a set of static pages, you open up many new possi-
bilities for your users.

Angular provides powerful tools for organizing your code and lets you structure
your markup to create intention-revealing, testable, managable front-end
code. And it doesn’t matter how small or large the task. As your UI gets more
complex, Angular will scale much better than something more basic like
jQuery.

As an example, consider showing and hiding a section of the DOM using
jQuery. You might do something like this:

<section>
<p>You currently owe: $123.45</p>
<button class="reveal-button">Show Details</button>
<ul style="display: none" class="details">

3. https://angularjs.org

• Click HERE to purchase this book now. discuss

PostgreSQL, Angular, and Bootstrap: The Missing Parts of Our Stack • 5

https://angularjs.org
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Base fee: $120.00
Taxes: $3.45

</section>
<script>

$(".reveal-button").click(function($event) {
$(".details).toggle();

});
</script>

It’s not much code, but if you’ve ever done anything moderately complex, your
markup and JavaScript becomes a soup of magic strings, classes starting
with js- and oddball data- elements.

An Angular version of this might look like this:

angular_example.html
<section ng-app="account" ng-model="showDetails" ng-init="showDetails = false">

<p>You currently owe: $123.45</p>
<button ng-click="showDetails = !showDetails">Show/Hide Details</button>
<ul ng-if="showDetails">

Base fee: $120.00
Taxes: $3.45

</section>
<script>

var app = angular.module("account",[]);
</script>

Here, the view isn’t just a description of static content, but a clear indication
of how it should behave. Intent is obvious—you can see how this works
without knowing the underlying implementation—and there’s a lot less code.
This is what a higher-level of abstraction like Angular gives you that would
otherwise be a mess with jQuery or just plain JavaScript.

Unlike Postgres—where there are very few comparable open-source alternatives
that match its features and power—there are many JavaScript frameworks
comparable to Angular. Many of them are quite capable of handling the fea-
tures we’ll cover in this book. We’re using Angular for a few reasons. First,
it’s quite popular, which means there are far more resources online for
learning it, including deep dives beyond what we’ll get to here. Secondly, it
allows you to compose your front-end similarly to how you compose your
back-end in Rails, but is flexible enough to allow you to deviate later if you
need to.

If you’ve never done much with JavaScript on the front-end, or if you are just
used to jQuery, you’ll be pleasantly surprised at what Angular gives you:

Chapter 1. Introduction • 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang/code/angular_example.html
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Clean Separation of Code and Views Angular models your front-end as an
application with its own routes, controllers, and views. This makes orga-
nizing your JavaScript easy, and tames a lot of complexity.

Unit Testing from the Start Testing JavaScript—especially when it uses
jQuery—has always been a challenge. Angular was designed from the
start to make unit testing your JavaScript simple and convienient.

Clean, declarative views Angular views are just HTML. Angular adds special
attributes called directives that allow you to cleanly connect your data
and functions to the markup. You won’t have inline code or scripts, and
there’s a clear separation between view and code.

Huge ecosystem Because of its popularity, there is a large ecosystem of
components and modules. Many common problems have a solutions in
Angular’s ecosystem.

It’s actually hard to fully appreciate the power of a JavaScript framework like
Angular without using it, but we’ll get there. We’ll turn a run-of-the-mill
search feature into a dynamic, asynchronous live search, with very little code.

Bootstrap
Bootstrap4 is a CSS framework created by Twitter for use in the internal
applications. A CSS framework is a set of CSS classes you apply to markup
to get a particular look and feel. Bootstrap also includes components, which
are classes that, when used on particular HTML elements in particular ways,
produce a distinct visual artifact, like a form, panel, or an alert message.

The advantage of a CSS framework like Bootstrap is that you can create full-
featured user interfaces without writing any CSS. Why be stuck with an ugly
and hard-to-use form like this?

4. http://getbootstrap.com

• Click HERE to purchase this book now. discuss

PostgreSQL, Angular, and Bootstrap: The Missing Parts of Our Stack • 7

http://getbootstrap.com
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

By just adding a few classes to some elements, you can have something pol-
ished and professional like this instead:

In Chapter 2, Create a Great-Looking Login with Bootstrap and Devise, on
page ?, we’ll do this to the login and registration forms provided by the Devise
gem. We’ll have a great-looking user sign-up and sign-in experience, without
writing any CSS.

Bootstrap includes a lot of CSS for a lot of different occasions.

Chapter 1. Introduction • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Typography Just including Bootstrap in your application, and using
semantic HTMl will result in pleasing content with good general typogra-
phy.

Grid Bootstrap’s grid makes it easy to layout complex, multi-column compo-
nents. It can’t be overstated how important and powerful this is.

Form Styles Styling good-looking forms can be difficult, but Bootstrap provides
many CSS classes that make it easy. Bootstrap-styled forms have great
spacing and visual appeal, and feel cohesive and inviting to users.

Components Bootstrap also includes myriad components, which are CSS
classes that, when applied to particular markup, generate a visual com-
ponent, like a styled box or alert message. These components can be great
inspiration for solving simple design problems.

It’s important to note that Bootstrap is not a replacement for a designer, nor
are all UIs created with Bootstrap inherently usable. There are times when a
specialist in either visual design, interaction design, or front-end implemen-
tation is crucial to the success of a project.

But for many software problems, you don’t need these specialists, and they
are often incredibly hard to find when you do. Bootstrap will allow you to
produce a professional, visually appealing user interface in their absence.
Bootstrap will also allow you to realize visual designs that might seem difficult
to do with CSS. In Chapter 5, Create Clean Search Results with Bootstrap
Components, on page ? and Chapter 9, Design Great UIs With Bootstrap's
Grid and Components, on page ? we’ll see just how easy it is to create a
customized UI without writing CSS, all thanks to Bootstrap.

Even if you have access to a designer or front-end specialists, the skills you’ll
learn by using Bootstrap will still apply—your front-end developer isn’t going
to write every line of markup and CSS. They are going to hand you a frame-
work like Bootstrap that enables you to do many of the things we’ll do in this
book.

Now that we’ve gotten a taste of what we’ll be learning, let’s talk about how
we’re going to learn it.

Learning Postgres, Angular, and Bootstrap At The Same
Time
If you’ve already looked at the table of contents, you’ll see that this book isn’t
divided into three parts—one for Postgres, one for Angular, and one for

• Click HERE to purchase this book now. discuss

Learning Postgres, Angular, and Bootstrap At The Same Time • 9

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Bootstrap. That’s not how a full-stack developer approaches development. A
full-stack developer is given a problem to solve and is expected to bring all
forces to bear in solving it.

For example, if you’re implementing a search, and it’s slow, you’ll consider
both creating an index in the database as well as performing the search with
AJAX calls to create a more dynamic and snappy UI. You should use features
at every level of the stack to get the job done.

This holistic approach is how we’re going to learn these technologies. We’re
going to build a Rails application together, adding features one at a time.
These features will demonstrate different aspects of the technologies we’re
using.

To keep things simple, each chapter will focus on one of these technologies,
and we’ll complete features over several chapters. For example, in Chapter
2, Create a Great-Looking Login with Bootstrap and Devise, on page ?, we’ll
set up a simple registration system for our application, and use Bootstrap to
style the views. In Chapter 3, Secure the Login Database with Postgres Con-
straints, on page ?, we’ll continue the feature, but focus on using Postgres
to add extra security at the database layer. This will allow us to see a feature
evolved and bring in every part of the application stack that’s relevant. This
will then give you the confidence to do the same for features that you build
in your apps.

It’s also worth emphasizing Rails’ role in all of this. Although Rails doesn’t
have built-in APIs for using Postgres’ advanced features, nor support for
Angular’s way of structuring code, it doesn’t outright prevent our using them.
And, Rails is a great middleware; probably one of the best.

So, in addition to learning Postgres, Angular, and Bootstrap, we’re also going
to learn how to get them working with Rails. We’ll see not just how to create
check constraints on columns in our tables, but how to do that from a Rails

Chapter 1. Introduction • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

migration. And we won’t just learn how to style Angular components with
Bootstrap, we’ll do it using assets served up by the Asset Pipeline.

Let’s learn about the Rails application that we’ll be building throughout the
book.

Shine, the Application We’ll Build
We’ll create and add features to a Rails application over the chapters of this
book. This application is going to be for the customer service agents at a
hypothetical company where we work. Our company has a public website
that its customers use, but we want a separate application for the customer
service agents. You’ve probably seen or heard about internal-facing apps like
this. Perhaps you’ve even worked on one (most software is internally-facing).

The application will be called Shine (since it allows our great customer service
to shine through to our customers). The features that we’ll build for this
application in the book involve searching for, viewing, and manipulating
customer data.

For example, we’ll allow the user to search for customers.

And they can click through and view or edit a customer’s data.

• Click HERE to purchase this book now. discuss

Learning Postgres, Angular, and Bootstrap At The Same Time • 11

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

These features may seem simple on the surface, but there’s hidden complex-
ity that we’ll be able to tame with Postgres, Angular, and Bootstrap. In each
chapter, we’ll make a little bit of progress on Shine, learning features of
Postgres, Angular, Bootstrap, and Rails in the process.

How Each Chapter Will Work

As we mentioned, each chapter will focus on one part of our stack, as we
build a part of a feature. To help us know where we are, each chapter will
start with a diagram that shows which parts of the stack we’ll be focusing
on, what feature we’re building, and what aspects of each technology we’re
going to be learning.

The first feature we’ll build is a registration and login system, which will allow
us to both style the user interface with Bootstrap, but also secure the
underlying database with Postgres. We’ll get our Rails application set up and
style the login in Chapter 2, Create a Great-Looking Login with Bootstrap and
Devise, on page ?. We’ll then tighten up the security by learning about check
constraints in Chapter 3, Secure the Login Database with Postgres Constraints,
on page ?.

We’ll then move onto a customer search feature, which is a fertile ground for
learning about full-stack development. In Chapter 4, Use Fast Queries with
Advanced Postgres Indexes, on page ?, we’ll implement a naive fuzzy search,
and learn how to examine Postgres’ query plan to understand why our search
is slow. We’ll then use Postgres’ advanced indexing features to make it fast.
In Chapter 5, Create Clean Search Results with Bootstrap Components, on
page ?, we’ll learn how to use some of Bootstrap’s built-in components and
helper classes to create non-tabular search results that look great.

Chapter 1. Introduction • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Chapter 6, Build a Dynamic UI with AngularJS, on page ?, is an introduction
to AngularJS, which we’ll use to make our customer search much more
dynamic. This chapter will allow us to learn how to setup and manage
Angular as part of the Asset Pipeline, as well as how to read user input and
do AJAX calls to our Rails application.

With a fully-implemented customer search, we’ll take a pause at Chapter 7,
Test This Fancy New Code, on page ? to learn how to write tests for everything
we’ve learned. Testing has always been a big part of Rails, so whenever we
veer off of Rails’ golden path, it’s important to make sure we have a great
testing experience.

Chapter 8, Create a Single-Page App Using Angular's Router, on page ? will
be our first step in building a more complex feature that shows customer
details. We’ll turn our customer search into a client-side, single-page applica-
tion that allows the user to navigate from search results to customer details
without reloading the page. This will let us learn about Angular’s router and
navigation features.

In Chapter 9, Design Great UIs With Bootstrap's Grid and Components, on
page ?, we’ll learn about a powerful web design tool called the grid and how
Bootstrap implements it. We’ll use it to create a dense UI that’s clean, clear,
and usable. In Chapter 10, Cache Complex Queries Using Materialized Views,
on page ?, we’ll implement the back-end of our customer details view by
turning a query of highly complex joins into a simple auto-updated cache
using Postgres’ materialized views.

In Chapter 11, Load Data from Many Sources Asynchronously, on page ?,
we’ll learn how Angular’s asynchronous nature allows us to keep our front-
end simple, even when we need data from several sources. We’ll finish off our
customer detail page feature, as well as our in-depth look at these technolo-
gies, in Chapter 12, Save Changes to the Server Automatically When it Changes,
on page ?, by learning about Angular’s data binding, which will allow us to
auto-save changes the user makes on the front-end.

All of this is just a small part of what you can do with Bootstrap, Angular,
and Postgres, so in Chapter 14, Grab Bag: More Useful Tidbits, on page ?,
we’ll survey some of the other features we don’t have space to get to.

When it’s all said and done, you’ll have the confidence needed to solve prob-
lems by using every tool available in the application stack. You’ll be just as
comfortable creating an animated progress bar as you will setting up views
and triggers in the database. Moreover, you’ll see how you can use these sorts
of features from the comfort of Rails.

• Click HERE to purchase this book now. discuss

Learning Postgres, Angular, and Bootstrap At The Same Time • 13

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Getting Set Up
To get ready to follow along, you don’t need to do much to get yourself set up.
You’ll just need to install Ruby, Rails, and Postgres.

Ruby and Rails
If you don’t have Ruby installed, you’ll need to follow the instructions on
Ruby’s website5. I would recommend using an installer or manager, but as
long as you have Ruby 2.2 installed and the ability to install gems you’ll be
good to go.

With Ruby installed, you’ll need to install Rails. This is usually as simple as:

> gem install rails

You want to make sure to get the latest version of Rails, which is 4.2 at the
time of this writing.

Postgres
Postgres is free and open-source, and you can install it locally by looking at
the instructions for your operating system on their website6. Make sure you
get version 9.4, as some of the features we’ll discuss were introduced in that
version. In Chapter 3, Secure the Login Database with Postgres Constraints,
on page ?, we’ll outline how to set up a user to access the databases.

An alternative is to use a free, hosted version of Postgres. Heroku Postgres7

provides such a version, and will work great with this book. You can sign up
on their website, and they’ll give you the credentials to access the hosted
database from your computer (we’ll show you where to use them in the next
chapter).

Everything Else
Everything else we’ll need to install, we’ll setup and install as we get to it.
We’ll be using a lot of third-party libraries and tools—integrating them
together is what this book is about. Pay particular attention to the versions
of libraries in Gemfile and Bowerfile that are included in the example code
download. While we’ve tried to make the code future-compatible, there’s
always a chance that a point release of a library breaks something.

5. https://www.ruby-lang.org/en/downloads/
6. http://www.postgresql.org/download/
7. https://www.heroku.com/postgres

Chapter 1. Introduction • 14

• Click HERE to purchase this book now. discuss

https://www.ruby-lang.org/en/downloads/
http://www.postgresql.org/download/
https://www.heroku.com/postgres
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

At a high level, the book was written with the following versions of the tools
and libraries:

• Ruby 2.2

• Rails 4.2

• Bootstrap 3

• Angular 1.4

• Teaspoon 2

• Devise 3.5

• Postgres 9.4

We expect everything here to work with Rails 5 and Postgres 9.5. At the time
of this writing, Angular 2 is set to be a ground-up rewrite—essentially a
totally new framework—but 1.4 is expected to be supported for quite some
time. Bootstrap 4 has no current release schedule, but it’s expected to create
breaking changes.

Example Code
The running examples in the book are extracted from full-tested source code
that should work as shown, but you should download the sample code from
http://pragprog.com. Each step of our journey through this topic has a different
sudirectory, each containing an entire Rails application. While the book is
only showing you the changes you need to make, we’ve tried to make sure
that the downloadable code records a snapshot of the fully-working application
as of that point in the book.

Online Forum and Errata
While reading through the book, you may have questions about the material,
or you might find typos or mistakes. For the later, you can add issues to the
Errata for the book at http://www.pragprog.com. Think of it as a bug-reporting
system for the book.

For the former—questions about the material—you should visit the online
forum at http://www.pragprog.com. There, you’ll be able to interact with me and
other readers to get the most out of the material.

I hope you’re ready to start your journey in full-stack application development!
Let’s kick it off by creating our new Rails application and setting up a great-
looking, and secure, login system.

• Click HERE to purchase this book now. discuss

Getting Set Up • 15

http://pragprog.com
http://www.pragprog.com
http://www.pragprog.com
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

