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Paginating the Results using Bootstrap’s Components

Adding pagination can be done in just two steps: adjusting the query to find
the right “page”, and adding pagination controls to the view. There are several
RubyGems out there that can help us, but it’s actually not that much code
to just do it ourselves. Since we’ll be porting our view over to Angular in the
next chapter, there’s little benefit to integrating a gem at this point.

We'll take it one step at a time. First, we’ll adjust the controller to handle
pagination.

Handling Pagination in the Controller

For simplicity, we’ll hard-code the size of a page to 10 results, and look for a
new parameter, :page that indicates which page the user wants, with a default
of 0.

search/pagination/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController
PAGE_SIZE = 10

def index
@page = (params[:page]l || 0).to i

# ...

end
end

Next, we’ll use both PAGE_SIZE and @page to construct parameters to ActiveRe-
cord’s offset and limit methods. Since our results are sorted, we can rely on
these two methods to allow us to reliably page through the results without
the order changing between pages.

search/pagination/shine/app/controllers/customers_controller.rb
@customers = Customer.where(
customer_search term.where clause,
customer search term.where args).
order(customer _search _term.order).
offset (PAGE SIZE * @page).limit(PAGE SIZE)

That’s all there is to our controller. Now, we’ll adjust the view to allow paging.

Adding Pagination Controls to the View

To keep things simple, we’ll go with a previous/next style of pagination. This
means we'll need two links on the page, which we can create by adding or
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subtracting 1 to @page and passing that to the Rails-provided customers_path
helper.

To style the links, Bootstrap provides a component we can use, called a pager.
Let’s set it up in a partial, which we’ll then use to place the pager before and
after the results list (this allows the user to always have the pager handy).
We've highlighted the markup and classes Bootstrap requires to style the
pager. Pay special attention to disabled, which will give our Previous button a
disabled look if we're on the first page.

search/pagination/shine/app/views/customers/_pager.html.erb

<nav>
<ul class="pager">
<li class="previous <%= page == 0 ? 'disabled’ oes>>

<%= link to "&larr; Previous".html safe,
customers_path(keywords: keywords, page: page - 1) %>
</li>
<li class="next">
<%= link_to "Next &rarr;".html_safe,
customers path(keywords: keywords, page: page + 1) %>
</li>
</ul>
</nav>

Now, we’ll include the partial in app/views/customers/index.html.erb.

search/pagination/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<%= render partial: "pager",
locals: { keywords: @keywords, page: @page } %>

<ol class="list-group">
<l-- ... -->

</ol>
<%= render partial: "pager",
locals: { keywords: @keywords, page: @page } %>
</section>

If we start our server and search, we’ll now only see 10 results, and our pager
controllers work to allow us to step through them.
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Because of our indexes, Postgres’ powerful implementation of order by, and
Bootstrap’s pre-made components, we were able to add performant pagination
in just a few lines of code.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang



