Extracted from:

Rails, Angular, Postgres,
and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap
, published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ema‘u’c
Ogramimers

Rails
Angular
Postgres

Bootstrap

Powerful
Effective
Efficient
Full-Stack
Web Development

David Bryant Copeland

edited by Fahmida Y. Rashid

Rails, Angular, Postgres,

and Bootstrap

Powerful, Effective, and Efficient
Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-126-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—July 29, 2015

https://pragprog.com
rights@pragprog.com

Paginating the Results using Bootstrap’s Components

Adding pagination can be done in just two steps: adjusting the query to find
the right “page”, and adding pagination controls to the view. There are several
RubyGems out there that can help us, but it’s actually not that much code
to just do it ourselves. Since we’ll be porting our view over to Angular in the
next chapter, there’s little benefit to integrating a gem at this point.

We'll take it one step at a time. First, we’ll adjust the controller to handle
pagination.

Handling Pagination in the Controller

For simplicity, we’ll hard-code the size of a page to 10 results, and look for a
new parameter, :page that indicates which page the user wants, with a default
of 0.

search/pagination/shine/app/controllers/customers_controller.rb
class CustomersController < ApplicationController
PAGE_SIZE = 10

def index
@page = (params[:page]l || 0).to i

...

end
end

Next, we’ll use both PAGE_SIZE and @page to construct parameters to ActiveRe-
cord’s offset and limit methods. Since our results are sorted, we can rely on
these two methods to allow us to reliably page through the results without
the order changing between pages.

search/pagination/shine/app/controllers/customers_controller.rb
@customers = Customer.where(
customer_search term.where clause,
customer search term.where args).
order(customer _search _term.order).
offset (PAGE SIZE * @page).limit(PAGE SIZE)

That’s all there is to our controller. Now, we’ll adjust the view to allow paging.

Adding Pagination Controls to the View

To keep things simple, we’ll go with a previous/next style of pagination. This
means we'll need two links on the page, which we can create by adding or

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/controllers/customers_controller.rb
http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/controllers/customers_controller.rb
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

vy

o4

subtracting 1 to @page and passing that to the Rails-provided customers_path
helper.

To style the links, Bootstrap provides a component we can use, called a pager.
Let’s set it up in a partial, which we’ll then use to place the pager before and
after the results list (this allows the user to always have the pager handy).
We've highlighted the markup and classes Bootstrap requires to style the
pager. Pay special attention to disabled, which will give our Previous button a
disabled look if we're on the first page.

search/pagination/shine/app/views/customers/_pager.html.erb

<nav>
<ul class="pager">
<li class="previous <%= page == 0 ? 'disabled’ oes>>

<%= link to "← Previous".html safe,
customers_path(keywords: keywords, page: page - 1) %>

<li class="next">
<%= link_to "Next →".html_safe,
customers path(keywords: keywords, page: page + 1) %>

</nav>

Now, we’ll include the partial in app/views/customers/index.html.erb.

search/pagination/shine/app/views/customers/index.html.erb
<section class="search-results">
<header>
<hl class="h3">Results</hl>
</header>
<%= render partial: "pager",
locals: { keywords: @keywords, page: @page } %>

<ol class="list-group">
<l-- ... -->

<%= render partial: "pager",
locals: { keywords: @keywords, page: @page } %>
</section>

If we start our server and search, we’ll now only see 10 results, and our pager
controllers work to allow us to step through them.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/views/customers/_pager.html.erb
http://media.pragprog.com/titles/dcbang/code/search/pagination/shine/app/views/customers/index.html.erb
http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

Paginating the Results using Bootstrap’s Components ¢ 5

Customer Search
bob123@somewhere.net
Results
+ Previous Next —
Robert Jones bobby_nelie.skiles Joinen 2015-03-14

bob123@somewhere.net

Winston Bob reuben_nilperto Joinep 2015-03-14
boyd0@dibbertgoyette.biz

Emery Bob daphnet Joineo 2015-03-14
ivy1@boylekohler.net

Vada Bob cletaz Joinep 2015-03-14

maye_lind2@leschfeeney.biz

Humberto Bob stephan.gulgowski3 JoineD 2015-03-14
greg.sanford3@dickensmoriette.info

Godfrey Bobby alertha.coles Joineo 2015-03-14

cristina5@pouros.net

Bob Little gerard jaskolskio Joinep 2015-03-14
lindaO@borerpouros.org
Bob Mayert kathiyn.wuckert2 Joinep 2015-03-14

kelley2@welch.net

Bob Mosciski albertas Joinen 2015-03-14

jodie_mccullough3@stark.org

Bob Rosenbaum naomit Joinen 2015-03-14

florian_stehr1@macgyverdamore.org

+ Previous Next —

Because of our indexes, Postgres’ powerful implementation of order by, and
Bootstrap’s pre-made components, we were able to add performant pagination
in just a few lines of code.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang
http://forums.pragprog.com/forums/dcbang

