
Extracted from:

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-220-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Grid: The Cornerstone of a Web Design
I don’t know about you, but looking at a complex layout like the one we’re
going to build gives me a bit of anxiety. It’s not just that CSS can be difficult
to use, but it’s also not immediately clear how to wrangle all the parts of this
design.

Like functional decomposition in programming, a grid is how you can break
down a user interface into smaller parts. You can focus on each part of the
design, and rely on the grid to keep everything looking visually cohesive.

A grid is more or less what it sounds like—a means of aligning elements along
a fixed horizontal and/or vertical axis. You might not have realized it, but
you’ve been using a grid already. By just using Bootstrap’s default styles and
form classes, the forms we created in Chapter 2, Create a Great-Looking Login
with Bootstrap and Devise, on page ? (as well as the search results from
Chapter 5, Create Clean Search Results, on page ?) use a horizontal grid.
This means that each row of information is spaced in a particular way to
make the text and other elements pleasing and orderly.

For the view here, we need a vertical grid, which allows us to place content
into side-by-side columns. This is how we’ll achieve most of the layout we
want. Bootstrap provides a set of CSS classes that allow us to create a grid.
Under the covers, it uses CSS floats, which can get messy quickly, but Boot-
strap’s grid abstracts that away.

Bootstrap’s grid has 12 columns. You can combine columns in any way you
like to make larger columns, without disrupting the flow and spacing of the
grid. For example, you could have a two-column layout where the first column
is 25% of the entire width, leaving the remaining 75% for the second column,
or you could have three columns of equal size, each taking 33% of the available
width.

If you think about your design in terms of rows and columns, you can start
to see the grids pop out of our design. Take a look at the following figure.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

Googlehttp://shine.example.com/customers/1234
Shine: Customer 1234

Customer Info Billing Info

Shipping Address

Bob Jones bobert1234@

bobbyj@somewhere.net JOINED 2/13/2014

123 Any St

Unit 101

Washington 20002DC

123 Any St

Unit 101

Washington 20002DC

View at Payment Processor…

Same as Shipping?Billing Address

****-****-****-1234 Expires 12/18VISA

Hide if “Same
as Shipping”
checked

GRID CELL 50% GRID CELL 50%

NESTED 50% 33%17%

You can see two grid cells, each taking 50% of the available space, for the
main columns of our design, but you can also see a grid nested in each form.
The city/state/zip part of the shipping address could be thought of as a grid
where the city takes 50% (six grid cells), the state takes 17% (or two grid
cells), and the zip code takes the remaining 33% (or four grid cells).

What this means is that, if we have sufficiently generic CSS classes that allow
us to place content into grid cells, and to place those cells into rows, and to
nest grids within each other, all with proper padding, spacing, and margins,
we can break up any design into a series of grids.

This is exactly what Bootstrap’s grid system will do.

Using Bootstrap’s Grid
Bootstrap’s grid is quite powerful, especially if you’ve never used one before.
In this section, we’ll build the layout for our view using Bootstrap’s grid. As
we saw in the previous section, our layout starts with two equal-sized grid
cells: one that holds the customer information and shipping address, and the
other that holds the billing information.

First, we’ll create these cells, which will demonstrate the various CSS classes
needed to enable Bootstrap’s grid. Then, we’ll see how the grid can nest
within itself to lay out the customer information and shipping address as a
grid-within-a-grid.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

Lay Out the Two Main Columns
The most obvious grid in our design is one that holds the two main columns,
each taking half the available space. To do this, we’ll create two nested div
tags inside a parent div, giving each the appropriate CSS class—provided by
Bootstrap—to lay it all out in a grid (see on page 8 for some details on why
we’re using divs).

The outer div has the class row, which tells Bootstrap we’re going to place
columns inside it. The divs inside the row have class col-md-X, where X is the
number of columns, out of 12, that this particular column should take up.
Because we want two equal-sized columns, we want each of our columns to
take up six of Bootstrap’s. Thus, each div will get the class col-md-6 (see Chapter
13, Dig Deeper, on page ? for what the -md- means).

We can add this markup to app/javascript/CustomerDetailsComponent/template.html,
replacing the bare-bones markup we had there from the last section.

<section class="customer-details" *ngIf="customer">
<form><div class="row">

<div class="col-md-6">
<h1>Customer</h1>

</div>
<div class="col-md-6">

<h1>Billing Info</h1>
</div>

</div></form>
</section>

If you bring this up in your browser, you’ll see that our two headings are
shown side by side:

Now, let’s tackle the content inside these columns. As we saw earlier, we can
think of each section of our page as having a nested grid inside this one.
Bootstrap’s grid works exactly this way.

Build Forms Using a Grid-Within-a-Grid
Bootstrap’s grid is not a fixed width, so whenever you write <div class="row">,
Bootstrap will divide up the grid in that row based on the available space.
This is a powerful feature of the grid system. Much like how we decompose
complex objects into smaller ones to make our code easier to understand, we
can decompose larger views into smaller ones using the grid.

• Click HERE to purchase this book now. discuss

Using Bootstrap’s Grid • 7

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

Why Do We Sometimes Use div and Sometimes Not?

Before HTML5, there weren’t a lot of standard elements you could use to describe
your content. As a result, the div element came into favor as the way to organize
content, particularly for targeting by CSS styling. With the advent of HTML5, more
meaningful elements are available, such as article, section, header, and footer.

Because of this, the W3C recommends that div be used only as a last resort,a when
no other elements are available.

What this means is that you want to use the right tags when describing your content,
regardless of the visualization you are going for. You can then use div tags to achieve
the layouts you want. Because div is semantically meaningless, it allows anyone
reading your view templates to see clearly what parts of the view are for styling and
layout and what parts are for organizing the content.

So, the general rule of thumb is to use divs in cases where you need an element to
style against, and not as a way to describe content.

a. http://www.w3.org/TR/html5/grouping-content.html#the-div-element

By thinking of each page’s component as a grid, we can design that component
without worrying about where it is on the page. Bootstrap’s grid components
will make sure it works.

Let’s style the customer information section using the grid. We can see from
our mock-up that we have three rows, and the first row has three columns.
Since the second and third rows just have one column that takes up the entire
row, we don’t need to use the grid markup for them. So, we just need to create
a grid for the first row.

We’ll be using the form classes we saw in Chapter 2, Create a Great-Looking
Login with Bootstrap and Devise, on page ?, so hopefully this will look
familiar. The first name, last name, and username are all about the same size
data-wise, so we can create three equal-sized columns for them. Because
Bootstrap’s grid is 12 columns, we want each of our columns to take up four
of Bootstrap’s columns, so we’ll use the class col-md-4 on each div.

<section class="customer-details" *ngIf="customer">
<form><div class="row">

<div class="col-md-6">
<h1>Customer</h1>
<div class="row">➤

<div class="col-md-4">➤

<div class="form-group">
<label class="sr-only" for="first-name">First Name</label>
<input type="text" class="form-control"

• 8

• Click HERE to purchase this book now. discuss

http://www.w3.org/TR/html5/grouping-content.html#the-div-element
http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

name="first-name" value="Bob">
</div>

</div>
<div class="col-md-4">➤

<div class="form-group">
<label class="sr-only" for="last-name">Last Name</label>
<input type="text" class="form-control"

name="last-name" value="Jones">
</div>

</div>
<div class="col-md-4">➤

<div class="form-group">
<label class="sr-only" for="username">Username</label>
<input type="text" class="form-control"

name="username" value="bobert123">
</div>

</div>
</div>➤

<div class="form-group">
<label class="sr-only" for="email">Email</label>
<input type="text" class="form-control"

name="email" value="bobbyj@somewhere.net">
</div>
<label for="joined">Joined</label> 12/13/2014
<h2>Shipping Address</h2>

Note that we used form-group on a different element as col-md-4. This isn’t tech-
nically required but is commonly done to separate concerns. Generally, you
want classes used for your grid to be separate from classes used for styling
so that you can be sure your grid doesn’t get messed up by styling classes.
Also, we can add more styling later without worrying about how the grid will
affect it. Take a look at what we’ve done in our browser (see the following fig-
ure), and you can see that it looks pretty good!

Up to now, we’ve created grid cells that are all the same size. Let’s lay out the
shipping address part of our page, which requires that some of the grid cells
be larger than others.

• Click HERE to purchase this book now. discuss

Using Bootstrap’s Grid • 9

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

