Extracted from:

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap,
Second Edition, published by the Pragmatic Bookshelf. For more information or
to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Rails, Angular,

Postgres, and Bootstrap
Second Edition

Powerful, Effective, Efficient,
Full-Stack Web Development

David Bryant Copeland
Edited by Katharine Dvora

I
(=

.- ~ Y /N - -"

—- 4

Y4/ ALY

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC

Copy Editor: Liz Welch

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-220-6

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Understanding Query Performance with the Query Plan

If you aren’t familiar with database indexes, Wikipedia has a pretty good
definition,® but in essence, an index is a data structure created inside the
database that speeds up query operations. Usually, databases use advanced
data structures like B-trees to find the data you're looking for without exam-
ining every single row in a table.

If you are familiar with indexes, you might only be familiar with the type of
indexes that can be created by Active Record’s Migrations API. This API pro-
vides a “lowest common denominator” approach. The best we can do is create
an index on last_name, first_name, and email. Doing so won’t actually help us
because of the search we are doing. We need to match values that start with
the search term and ignore case.

Postgres allows much more sophisticated indexes to be created. To see how
this helps, let’s ask Postgres to tell us how our existing query will perform.
This can be done by preceding a SQL statement with EXPLAIN ANALYZE. The
output is somewhat opaque, but it’s useful. We’ll walk through it step by step.

$ bundle exec rails dbconsole
shine_development> EXPLAIN ANALYZE

SELECT *
FROM customers
WHERE

lower(first name) like 'pat%' OR

lower(last name) like 'pat%' OR

lower(email) = 'pat@example.com'
ORDER BY

email = 'pat@example.com' DESC,

last _name ASC ;

QUERY PLAN
©® sSort (cost=13930.19..13943.25 rows=5225 width=79)
(actual time=618.065..618.103 rows=704 loops=1)
Sort Key: (((email)::text = 'pat@example.com'::text)) DESC, last name
Sort Method: quicksort Memory: 124kB

(2] -> Seq Scan on customers (cost=0.00..13607.51 rows=5225 width=79) #
(actual time=0.165..612.380 rows=704 loops=1)
(3) Filter: ((lower((first name)::text) ~~ 'pat%'::text) OR
(lower((last name)::text) ~~ 'pat%'::text) OR
(lower((email)::text) = 'pat@example.com'::text))

Rows Removed by Filter: 349296
Planning time: 1.223 ms
O Execution time: 618.258 ms

6. http://en.wikipedia.org/wiki/Database_index

« Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Database_index
http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

°6

This gobbledegook is the query plan and is quite informative if you know how
to interpret it. There are four parts to it that will help you understand how
Postgres will execute our query.

© Here, Postgres is telling us that it’s sorting the results, which makes sense
since we're using an order by clause in our query. The details (for example,
cost=15479.51) are useful for fine-tuning queries, but we're not concerned
with that right now. Just take from this that sorting is part of the query.

© This is the most important bit of information in this query plan. “Seq Scan
on customers” means that Postgres has to examine every single row in
the table to satisfy the query. This means that the bigger the table is, the
more work Postgres has to do to search it. Queries that you run frequently
should not require examining every row in the table for this reason.

© This shows us how Postgres has interpreted our where clause. It's more
or less what was in our query, but Postgres has annotated it with the
internal data types it’s using to interpret the values.

O Finally, Postgres estimates the runtime of the query. In this case, it’s more
than half a second. That’s not much time to you or me, but to a database,
it's an eternity.

EXPLAIN vs. EXPLAIN ANALYZE

EXPLAIN ANALYZE actually runs the query, whereas EXPLAIN (without

ANALYZE) will just show the query plan. This means that repeatedly

executing EXPLAIN ANALYZE on the same query could produce different

72 timings, because Postgres could cache the query’s results. The

_l query plan (everything up to “Execution time” in the output shown
earlier) will always be the same. It's not easy to control the caches
Postgres uses, but if you vary the search string or ID in your WHERE
clauses, you can often prevent it from using the cache.

Given all of this, it’s clear that our query will perform poorly. It’s likely that
it performs poorly on our development machine, and will certainly not scale
in a real-world scenario.

In most databases, because of the case-insensitive search and the use of like,
there wouldn’t be much we could do. Postgres, however, can create an index
that accounts for this way of searching.

Indexing Derived and Partial Values

Postgres allows you to create an index on transformed values of a column.
This means you can create an index on the lowercased value for each of our

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

Indexing Derived and Partial Values ¢ 7

three fields. Further, you can configure the index in a way that allows Postgres
to optimize for the “starts with” search you are doing. Here’s the basic syntax:

CREATE INDEX
customers_lower last name
ON
customers (lower(last name) varchar pattern ops);

If you're familiar with creating indexes, the varchar_pattern_ops might look odd.
This is a feature of Postgres called operator classes. Specifying an operator
class isn’t required; however, the default operator class used by Postgres will
only optimize the index for an exact match. Because you're using a like in your
search, you need to use the nonstandard operator class varchar_pattern_ops. You
can read more about operator classes in Postgres’s documentation.”

Now that you've seen the SQL needed to create these indexes, you need to
adapt them to a Rails migration. Previous versions of Rails didn’t provide a
way to do this, and you'd have to use execute to directly execute SQL, but as
of Rails 5, we can pass custom SQL to add_index, making our migration a bit
cleaner. Let’s create the migration file using Rails’s generator.

$ bundle exec rails g migration add-lower-indexes-to-customers
invoke active record
create db/migrate/20160721030725 add lower indexes to customers.rb

Next, edit the migration to add the indexes. Rails 5 added the ability to create
these Postgres-specific indexes using add_index. Previous versions of Rails
required using execute and typing the CREATE INDEX SQL directly.

4_postgres-index/40-add-indexes/shine/db/migrate/20160721030725_add_lower_indexes_to_customers.rb
class AddLowerIndexesToCustomers < ActiveRecord::Migration[5.0]
def change
add _index :customers, "lower(last name) varchar pattern ops"
add_index :customers, "lower(first name) varchar pattern ops"
add_index :customers, "lower(email)"
end
end

Note that we aren’t using the operator class on the email index since we’ll
always be doing an exact match. Sticking with the default operator class is
recommended if we don’t have a reason not to. Next, let’s run this migration
(it may take several seconds due to the volume of data being indexed).

$ bundle exec rails db:migrate
== 20160721030725 AddLowerIndexesToCustomers: migrating ===========
-- add_index(:customers, "lower(last name) varchar pattern ops")

7. http://www.postgresql.org/docs/9.5/static/indexes-opclass.html

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang2/code/4_postgres-index/40-add-indexes/shine/db/migrate/20160721030725_add_lower_indexes_to_customers.rb
http://www.postgresql.org/docs/9.5/static/indexes-opclass.html
http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

°8

-> 0.5506s

-- add_index(:customers, "lower(first name) varchar pattern ops")
-> 0.4963s

-- add_index(:customers, "lower(email)")
-> 7.1292s

== 20160721030725 AddLowerIndexesToCustomers: migrated (8.1763s) ==

Before you try the app, let’s run the EXPLAIN ANALYZE again and see what it says.
Note the highlighted lines.

$ bundle exec rails dbconsole
shine_development> EXPLAIN ANALYZE

SELECT *
FROM customers
WHERE

lower(first name) like 'pat%' OR
lower(last name) like 'pat%' OR

lower(email) = 'pat@example.com'
ORDER BY
email = 'pat@example.com' DESC,

last name ASC

QUERY PLAN
Sort (cost=5666.10..5679.16 rows=5224 width=79)
(actual time=14.467..14.537 rows=704 loops=1)
Sort Key: (((email)::text = 'pat@example.com'::text)) DESC, last name
Sort Method: quicksort Memory: 124kB
> -> Bitmap Heap Scan on customers
(cost=145.31..5343.49 rows=5224 width=79)
(actual time=0.387..8.650 rows=704 loops=1)

Recheck Cond: ((lower((first name)::text) ~~ 'pat%'::text) OR
(lower((last_name)::text) ~~ 'pat%'::text) OR
(lower((email)::text) = 'pat@example.com'::text))

Filter: ((lower((first name)::text) ~~ 'pat%'::text) OR
(Llower((last name)::text) ~~ 'pat%'::text) OR
(lower((email)::text) = 'pat@example.com'::text))

Heap Blocks: exact=655

-> BitmapOr (cost=145.31..145.31 rows=5250 width=0)

(actual time=0.263..0.263 rows=0 loops=1)
-> Bitmap Index Scan on
index customers on lower first name varchar pattern ops
(cost=0.00..41.92 rows=1750 width=0)
(actual time=0.209..0.209 rows=704 loops=1)
Index Cond: (
(lower((first name)::text) ~>=~ 'pat'::text) AND
(Lower((first name)::text) ~<~ 'pau'::text))
-> Bitmap Index Scan on
index customers on lower last name varchar pattern ops
(cost=0.00..41.92 rows=1750 width=0)
(actual time=0.007..0.007 rows=0 loops=1)

YvYy

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

YVYY

YYVYY

Indexing Derived and Partial Values ® 9

Index Cond: (
(lower((last name)::text) ~>=~ 'pat'::text) AND
(lower((last name)::text) ~<~ 'pau'::text))
-> Bitmap Index Scan on index_customers_on_lower_email
(cost=0.00..57.55 rows=1750 width=0)
(actual time=0.046..0.046 rows=0 loops=1)
Index Cond: (
lower((email)::text) = 'pat@example.com'::text)
Planning time: 0.193 ms
Execution time: 14.732 ms

This time, there is more gobbledegook, but if you look closely, Seq Scan on cus-
tomers is gone, and you can see a lot of detail around our where clause. The
highlighted lines indicate index scans, in contrast to the Seq Scan you saw
before. And the index scan is using our index and thus not examining each
row in the table to find the correct results. You can see that it's doing three
lookups, one for each field, using our indexes, and then or-ing the results
together.

Setting aside the details of how Postgres does this, you can see that the results
are about 40 times faster—the query should complete in under 15 mil-
liseconds!

If you try our search in Shine now, the results come back almost instantly.
We've improved the performance of our search by more than a factor of 40,
all with just a few lines of SQL in a migration. And you didn’t have to change
a line of code in the Rails application. If you were using a less powerful
database, you'd need to set up new infrastructure for making this search fast,
and that could have a significant cost to development, maintenance, and
production support.

This sort of index is just the tip of the iceberg—Postgres has many advanced
features.

With our search performing better, let’s take a final pass at the user interface.
Bootstrap’s default table styling made it a snap to create a reasonable user
interface in no time. This then enabled us to focus on the Rails application’s
behavior and performance. If you stopped now and shipped what you have,
you’d be shipping a feature you could be proud of. But, because you haven’t
spent that much time on this feature, let’s see if there’s any way to make the
UI better for our users.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

