
Extracted from:

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

This PDF file contains pages extracted from Rails, Angular, Postgres, and Bootstrap,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rails, Angular, Postgres, and
Bootstrap, Second Edition

Powerful, Effective, Efficient, Full-Stack Web Development

David Bryant Copeland

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-220-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Changing Our Search to Use Typeahead
Given everything you’ve done up to this point, changing the search from one
where you must click a button to one where the search happens as you type
will actually be fairly straightforward. Because Angular has allowed us to
separate our concerns, you have all the code you need in place. You’ll just
need to connect it to the user interface in a different way.

Currently, when the user modifies the contents of the text field, Angular
updates the value of keywords in our CustomerSearchComponent class. You can’t
directly see it, but it does it as the user types. If you can hook into that
behavior, you can perform your search as the user is typing.

Angular provides a way to do this by binding to the ngModelChange property.
The code you have now is

<input bindon-ngModel="keywords" ... >

which is equivalent to this:

<input bind-ngModel="keywords"
on-ngModelChange="keywords=$event" ... >

Recall that on- creates a one-way binding from the view to our code (you used
this for the click event earlier in Respond to Click Events, on page ?). As part
of sending the event back to our code for ngModelChange, Angular sets the
global variable $event. This means that instead of assigning it to keywords, as
happens by default, you can send $event to our search function:

<input type="text" id="keywords" name="keywords" \
placeholder="First Name, Last Name, or Email Address"\
class="form-control input-lg" \
bind-ngModel="keywords" \
on-ngModelChange="search($event)"> \

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

Note that because you’ve replaced Angular’s default behavior, you need to
set this.keywords inside search yourself. Right after you do that, however, you
can use the updated value to perform the search just as before (though you’re
only going to do a search for three or more characters so you don’t do too
broad a search):

6_angular/50-actual-typeahead/shine/app/javascript/packs/customers.js
search: function($event) {➤

var self = this;
self.keywords = $event;➤

if (self.keywords.length < 3) {➤

return;➤

}➤

self.http.get(
"/customers.json?keywords=" + self.keywords

).subscribe(
function(response) {
self.customers = response.json().customers;

},
function(response) {
window.alert(response);

}
);

}

Finally, let’s remove the “Find Customers” button since it’s no longer needed.
Removing this means you can remove the span surrounding the button as well
as the div you used to make the button group. Our search form now looks
like so:

<section class="search-form"> \
<form> \

<label for="keywords" class="sr-only">Keywords></label> \
<input type="text" id="keywords" name="keywords" \

placeholder="First Name, Last Name, or Email Address"\
bind-ngModel="keywords" \
on-ngModelChange="search($event)" \
class="form-control input-lg">\

</form> \
</section> \

Now, reload the page and type in “pat.” You’ll see some search results like
those shown in the figure on page 7.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcbang2/code/6_angular/50-actual-typeahead/shine/app/javascript/packs/customers.js
http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

If you keep typing out “patricia,” the results automatically reduce to only
those that match, as shown in the next figure.

• Click HERE to purchase this book now. discuss

Changing Our Search to Use Typeahead • 7

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

The typeahead works! The entire feature required little code (once you installed
and configured Angular—a one-time cost), and instead of implementing
typeahead with a special-purpose library, you have set up a framework for
implementing any user interface you might need. Because of how Angular
works, you aren’t wrestling with how to attach our JavaScript to our DOM
elements or how to interact with the back end. Because of how Rails works,
our back end is almost identical to the original back end.

In other words, by using what Rails gives us, and using what Angular gives
us, you were able to create a fairly sophisticated feature quickly and without
a lot of code. And it’s fast, thanks to Postgres’s sophisticated indexing and
ordering features.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcbang2
http://forums.pragprog.com/forums/dcbang2

