
Extracted from:

Ruby on Rails Background Jobs
with Sidekiq

Run Code Later without Complicating Your App

This PDF file contains pages extracted from Ruby on Rails Background Jobs with
Sidekiq, published by the Pragmatic Bookshelf. For more information or to pur-

chase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com






Ruby on Rails Background Jobs
with Sidekiq

Run Code Later without Complicating Your App

David Bryant Copeland

The Pragmatic Bookshelf
Dallas, Texas



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

Publisher: Dave Thomas
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-036-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Creating a Baseline Sidekiq Configuration
As you’ll learn, operating an app that uses Sidekiq requires vigilance and
adjustment. Your workloads are unique to your app, which means your
Sidekiq configuration will be equally unique. But it’s important to see a
baseline configuration that you can build on. Sidekiq has great defaults, but
setting up an explicit and flexible configuration will be helpful later when you
need to make changes.

First, install the Sidekiq gem by adding this line to your Gemfile. Note that call
to gem is preceded by a comment explaining what Sidekiq does. “Sidekiq” is
a cool name, but for anyone on your team that hasn’t heard of it, a few words
in the Gemfile can go a long way.

snapshots/1-2/sidekiq-book/Gemfile
# This is used to run the dev environment
gem "foreman"

➤

# Sidekiq is used for running background jobs➤

gem "sidekiq"➤

# Prevents our workers from running too long if a request
# doesn't return in time.

You can install this with bundle install:

> bundle install
«Lots of output»

Set Sidekiq’s Configuration Options
There are four options you need to configure in Sidekiq:

• Redis: Sidekiq needs to know how to connect to Redis. This can be config-
ured with an environment variable that Sidekiq will read.

• Concurrency: Sidekiq needs to know how many threads to run per server
process. You are likely to want to change this without having to wait for
a re-deploy so allowing an environment variable to override a default is a
good strategy here.

• Timeout: When Sidekiq asks a job to terminate, the timeout is how long
it will wait for forcing a job to stop. This is another value you may want
to change without a re-deploy, so you can use an environment variable
that overrides a default.

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-2/sidekiq-book/Gemfile
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq


• Queues: Queues aren’t added often, and they must be accompanied by a
code change that uses the queue. Explicitly hard-code the list of queues
to Sidekiq’s default value so you know where to change it in the future.

To connect to Redis, you’ll use a few environment variables. In the example
app’s development and test environment, the environment variables are
managed by the dotenv gem.2 That gem will examine the files .env.development
and .env.test and use them to set environment variables for development and
testing, respectively.

If you look at the files in the example app, you can see that there is a Redis
URL set to the environment variable SIDEDKIQ_REDIS_URL (this is already set so
that you could validate the example app’s ability to access Redis before
installing Sidekiq):

snapshots/0-0/sidekiq-book/.env.development
DATABASE_URL=postgres://postgres:postgres@db:5432/sidekiq-book_development
SIDEKIQ_REDIS_URL=redis://redis:6379/1
FULLFILLMENT_API_URL=http://fake-api-server:4000/fulfillment
PAYMENTS_API_URL=http://fake-api-server:4000/payments
EMAIL_API_URL=http://fake-api-server:4000/email
ERROR_CATCHER_API_URL=http://fake-api-server:4000/error-catcher

# Limit all requests to 5 seconds
RACK_TIMEOUT_SERVICE_TIMEOUT=5

The example app uses the name SIDEDKIQ_REDIS_URL to be explicit about what
the purpose of the Redis instance is. Sharing a Redis with another function,
like caching, is a recipe for disaster as a full cache could prevent you from
queuing jobs or vice versa.

But Sidekiq doesn’t know you’ve used this name. Rather than create an ini-
tializer to fetch the Redis URL from the environment, Sidekiq allows you to
set another environment variable named REDIS_PROVIDER that contains the name
of the environment variable that contains the Redis URL. In .env.development,
set REDIS_PROVIDER to SIDEDKIQ_REDIS_URL:

snapshots/1-1/sidekiq-book/.env.test
DATABASE_URL=postgres://postgres:postgres@db:5432/sidekiq-book_test
SIDEKIQ_REDIS_URL=redis://redis:6379/2
REDIS_PROVIDER=SIDEKIQ_REDIS_URL➤

FULLFILLMENT_API_URL=http://fake-api-server:4000/fulfillment
PAYMENTS_API_URL=http://fake-api-server:4000/payments
EMAIL_API_URL=http://fake-api-server:4000/email
ERROR_CATCHER_API_URL=http://fake-api-server:4000/error-catcher

2. https://github.com/bkeepers/dotenv

• 2

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/0-0/sidekiq-book/.env.development
http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-1/sidekiq-book/.env.test
https://github.com/bkeepers/dotenv
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq


You’ll need to make a similar change to .env.test:

snapshots/1-1/sidekiq-book/.env.development
DATABASE_URL=postgres://postgres:postgres@db:5432/sidekiq-book_development
SIDEKIQ_REDIS_URL=redis://redis:6379/1
REDIS_PROVIDER=SIDEKIQ_REDIS_URL➤

FULLFILLMENT_API_URL=http://fake-api-server:4000/fulfillment
PAYMENTS_API_URL=http://fake-api-server:4000/payments
EMAIL_API_URL=http://fake-api-server:4000/email
ERROR_CATCHER_API_URL=http://fake-api-server:4000/error-catcher

# Limit all requests to 5 seconds
RACK_TIMEOUT_SERVICE_TIMEOUT=5

This indirect mechanism may seem odd, but it is useful. It was originally
designed to help developers on Heroku, who were not usually able to control
the name of the environment variable for the Redis instances Heroku provided.
Despite this historical curiosity, the indirection through REDIS_PROVIDER allows
you to perform a manual failover on any hosting platform, even one you
manage yourself. You could deploy a second Redis instance and set a new
variable named, say NEW_REDIS_URL, to its connection string. Once you change
REDIS_PROVIDER to have the value NEW_REDIS_URL and restart your app, your app
will be using this new Redis without you having made any code changes. You
may never need this, but it’s handy to have and minimizes the amount of
configuration in your app.

For the rest of the configuration options, you’ll use config/sidekiq.yml. Sidekiq
parses this as if it were a .erb file, so you can put embedded code into it to
read from the environment via ENV. You can use this to allow the environment
to change the values for concurrency and timeout, falling back to Sidekiq’s
defaults if the environment variable is not set. There’s no need to use this
technique for queues or maximum retries, since these values are not likely
to require changing without an associated code change. Explicitly setting
them to their defaults is a good idea, however, so that it’s easier to know
where to change them in the future.

snapshots/1-1/sidekiq-book/config/sidekiq.yml
:concurrency: <%= ENV.fetch("SIDEKIQ_CONCURRENCY") { 5 } %>
:timeout: <%= ENV.fetch("SIDEKIQ_TIMEOUT_SECONDS") { 25 } %>
:queues:

- default

• Click  HERE  to purchase this book now.  discuss

Creating a Baseline Sidekiq Configuration • 3

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-1/sidekiq-book/.env.development
http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-1/sidekiq-book/config/sidekiq.yml
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq


Configure the Web UI
The last part of the configuration is to set up the Sidekiq Web UI. The Web
UI is a Rack App that you can mount onto any path in the app.3 It’s an
invaluable resource for understanding and managing Sidekiq in your app
(we’ll use it in Handling Permanent Failures via Monitoring, on page ? and
learn about some of its insights on job behavior in Sidekiq’s Web UI Provides
Observability at a Glance, on page ?).

First, require sidekiq/web at the top of config/routes.rb like so:

snapshots/1-1/sidekiq-book/config/routes.rb
require "sidekiq/web" # Brings in the Sidekiq Web UI➤

➤

Rails.application.routes.draw do
resources :orders, only: [ :new, :create, :show ]
resources :simulated_behaviors, only: [ :edit, :update ]

Then, mount the app using the mount method. The app’s class is Sidekiq::Web
and can be mounted to /sidekiq (though you can use whatever path you like):

snapshots/1-2/sidekiq-book/config/routes.rb
resources :simulated_behaviors, only: [ :edit, :update ]
root "welcome#show"
# make the Sidekiq Web UI available on /sidekiq➤

mount Sidekiq::Web => "/sidekiq"➤

end

Restart your server and navigate to http://localhost:3000/sidekiq and you should
see the Web UI looking similar to the following screenshot:

The Sidekiq Web UI showing various statistics about how Sidekiq is running.

3. https://github.com/rack/rack

• 4

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-1/sidekiq-book/config/routes.rb
http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-2/sidekiq-book/config/routes.rb
https://github.com/rack/rack
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq


Since this is a standard Rack App, you can secure access to it by whatever
means you like. Just be sure that you do secure access to it, since it can
expose sensitive information and allow a bad actor to create operational chaos.

Set Up Sidekiq to Run in Development
Before you start coding, you need to be able to run Sidekiq locally when you
execute bin/dev. bin/dev uses the file Procfile.dev as a way to know what commands
you want to run when starting up your app. Right now, it has commands for
running the Rails server as well as bundling front-end assets. Add a new line
that runs the Sidekiq server:

snapshots/1-2/sidekiq-book/Procfile.dev
web: PORT=3000 bin/rails s
sidekiq: bundle exec sidekiq➤

js: yarn build --watch
css: yarn build:css --watch

Now let’s use Sidekiq!

• Click  HERE  to purchase this book now.  discuss

Creating a Baseline Sidekiq Configuration • 5

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/1-2/sidekiq-book/Procfile.dev
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq

