Extracted from:

Ruby on Rails Background Jobs
with Sidekiq

Run Code Later without Complicating Your App

This PDF file contains pages extracted from Ruby on Rails Background Jobs with
Sidelkiq, published by the Pragmatic Bookshelf. For more information or to pur-
chase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas

http://www.pragprog.com

P’11:hematic

ogramimers

Ruby on Rails

Run Code
BaCkgr OLll’ld Later without
Jobs with \ Complicating

Your App

JEOL) S50
DIVYc {

Edited by Adaobi Obi Tulton

Ruby on Rails Background Jobs
with Sidekiq

Run Code Later without Complicating Your App

David Bryant Copeland

The Pragmatic Bookshelf

Dallas, Texas

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.
The team that produced this book includes:

Publisher: Dave Thomas

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-036-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Handling Permanent Failures via Monitoring

If a job has failed and will never succeed, it stands to reason that the only
way to fix the underlying problem is first to become aware of it. An extremely
common way to do this is to configure an error catching service (or error
catcher), like Honeybadger' or Bugsnag.”

An error catcher is a service that integrates with your app to receive notifica-
tions of any unhandled exception, including those from your Sidekiq jobs.
The error catcher then notifies you about the exception via email or an alerting
system like Pager Duty. The idea is that you don’t have to proactively check
for failed jobs; instead, you allow the error catcher to notify you if a job fails.
The example app you set up includes a mock error catcher so you can see
how it works without having to sign up for a real service and manage that
integration.

To connect Sidekiq to an error catcher, you'll need to configure an error han-
dler. Sidekiq’s configuration provides the attribute error_handlers, an array of
Proc objects that are called when an unhandled error is caught. Our mock
error catcher has a client library class included in the example app ErrorCatch-
erServiceWrapper, which has a method named notify that will send the exception
to the service.

To set this up, you'll need to create an initializer for Sidekiq in config/initializ-
ers/sidekig.rb. It will look like the following code, with the Proc configured for the
error catcher:

snapshots/2-1/sidekiq-book/config/initializers/sidekiq.rb
Sidekiq.configure_server do |config|
config.error_handlers << ->(exception,context hash) {
ErrorCatcherServiceWrapper.new.notify(exception)

}

end

Let’s see this in action by introducing a permanent failure. Add a line of code
to raise an exception at the start of OrderCreator's complete_order method, which
is what CompleteOrderjob calls:

snapshots/2-1/sidekiq-book/app/services/order_creator.rb
def complete_order(order)
raise 'forced error to demonstrate error-catching'
payments response = charge(order)
if payments response.success?

1. https://www.honeybadger.io

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/2-1/sidekiq-book/config/initializers/sidekiq.rb
http://media.pragprog.com/titles/dcsidekiq/code/snapshots/2-1/sidekiq-book/app/services/order_creator.rb
https://www.honeybadger.io
https://www.bugsnag.com
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq

°6

Now, create a new order using the example app. After doing so, you should
be redirected to the new order’s show page, but even after reloading that page,
the order should still indicate that payment, email, and order fulfillment are
in progress, as shown in the next screenshot.

%' SIDEKIQ BOOK APP Add An Order -

Order 3

pat@example.com

123 Any St
Product Flux Capacitor
Price $123.00
Quantity 21

Total $2,583.00

Operational Info

Payment {2 In Progress
Confirmation Email = Pending successful charge
Fulfillment Pending successful charge

A screenshot of the order show page that indicates that the payment, notifi-
cation email, and order fulfillment request are all pending.

Now, Go to the Sidekiq Web UI at http://localhost:3000/sidekiq and click on “Retries.”
You should see that the CompleteOrderjob is there, along with the error message
you added to complete_order. Sidekiq will also show you when it’s planning on
retrying the job, as shown in this screenshot:

Sidekiq Kidle Dashboard Bus Queues ~ Refries Scheduled Dea Metrics Live Poll
1 1 0 0 1 0 0
Processed Failed Busy Enqueued Retries Scheduled Dead
Retries
Next Retry Retry Count Queue Job Arguments Error
in14 seconds 0 default ~ CompleteOrderJob 3 RuntimeError: forced error to demonstrate error-catching

A screenshot of the Sidekiq Web UI's Retries page. It shows a single job’s class
and error message, along with an indicator of when the job will be retried.

The mock error catcher has a Web Ul you can examine to view the notifications
it has received. You can see it at http://localhost:3001, and it should look like the
shot below. If you see a notification here, a real error catcher would've notified
you.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq

Handling Permanent Failures via Monitoring ® 7

% MOCK ERROR CATCHER

Notifications

Time

Exception

Message

2023-07-03 17:00:10 +0000

RuntimeError

forced error to demonstrate error-catching

A screenshot of the mock error catcher that shows a table with entries for all

the retry attempts. Each entry shows a timestamp, the exception class name,
and the exception’s message.

Now, undo the syntax error:

snapshots/2-2/sidekig-book/app/services/order_creator.rb

def complete_order(order)
removed forced error

payments response = charge(order)
if payments response.success?

Go back to the Retries section of the Sidekiq Web UI. If the job is still there
waiting to be retried, click it, then click “Retry.” You should be returned to
the Retries section and not see anything there—the job succeeded! If you
refresh the order show page, you should see that all the operational stuff has

completed properly.

What's important to take away here is that if you had not been notified about
the job failure, you wouldn’t have known to fix the underlying problem and
the job would never have succeeded. This mechanism of being notified of
failure works extremely well...until you start getting transient failures, which

are far more common.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dcsidekiq/code/snapshots/2-2/sidekiq-book/app/services/order_creator.rb
http://pragprog.com/titles/dcsidekiq
http://forums.pragprog.com/forums/dcsidekiq

