
Extracted from:

Intuitive Python
Productive Development for Projects that Last

This PDF file contains pages extracted from Intuitive Python, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Intuitive Python
Productive Development for Projects that Last

David Muller

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-823-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Keeping Your Source Organized
Just like the dinosaurs in Jurassic Park, Python codebases have a habit of
breaking out from inside the fenced pens we try to create for them. One par-
ticularly vexing problem can be keeping project code organized. As time
passes, code starts to live in places it shouldn’t and it can become increasingly
difficult to find what files code should live in or where new code should be
placed. In this section, we’ll explore a general strategy that uses Python’s
built-in unittest module to keep a directory organized.

Maintaining Organization in a tests/ Directory
Many Python codebases contain tests to help verify that they are working
correctly. Frequently, these tests are defined in a directory named tests/ at the
top level of the codebase. The tests/ directory structure typically matches the
directory structure in the corresponding source directory that is being tested.

Let’s consider a Python project with the following directory structure:

├── j_park
│ ├── __init__.py
│ ├── dinosaurs
│ │ ├── __init__.py
│ │ ├── raptor.py
│ │ └── t_rex.py
│ └── fences
│ ├── __init__.py
│ ├── cable.py
│ └── electrified.py
└── tests

├── __init__.py
├── fences
│ ├── __init__.py
│ └── test_cable.py
├── test_electrified.py
└── test_raptor.py

This source tree has a j_park/ directory with source code and a tests/ directory
with test_*.py files that correspond to source files in j_park/.

If you look at this tree, you’ll see that the layout of the j_park/ directory has
diverged from the layout in tests/. Among other inconsistencies, test_electrified.py
is at the root level of tests/ instead of in the tests/fences/ subdirectory. Addition-
ally, test_raptor.py is orphaned at the root level of tests/ instead of occupying a
place in a tests/dinosaurs/ subdirectory.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

Python unittest Test Discovery Still Requires __init__.py

In Python 3, you generally do not need to create __init__.py files like
you did in Python 2. The __init__.py files are included in this example,
however, because a longstanding bug prevents Python unittest dis-
covery (for example, python3 -m unittest discover --help) from finding test
files that don’t have __init__.py siblings.10

With the existing disorganization, it would be unsurprising to receive a change
request that updates the directory layout so that jurassic_park/ and tests/ diverge
further:

├── jurassic_park
│ ├── __init__.py
│ ├── dinosaurs
│ │ ├── __init__.py
│ │ ├── raptor.py
│ │ └── t_rex.py
│ └── fences
│ ├── __init__.py
│ ├── cable.py
│ └── electrified.py
└── tests

├── __init__.py
├── fences
│ ├── __init__.py
│ └── test_cable.py
├── test_electrified.py
├── test_raptor.py

+ └── test_t_rex.py

Notice in the example that a new file test_t_rex.py has been added directly under
tests/. This doesn’t match j_park/ where t_rex.py lives under the dinosaurs/ subdi-
rectory.

The tests/ directory is becoming increasingly divergent from the j_park/ source
directory. As the project accumulates more files, it becomes harder and
harder to find where a source code is tested. It’s true that this disorganization
may not be the end of the world, but it increases the barrier to entry to your
project. Where does test code live? Where should new contributors find tests?
How do they know if something is already tested? You notice this and may
feel a bit wary—let’s address this wariness and capitalize on the opportunity
to improve the code’s organization.

10. https://stackoverflow.com/a/53976736

• 6

• Click HERE to purchase this book now. discuss

https://stackoverflow.com/a/53976736
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

You can mandate that the j_park/ and tests/ directory layouts match using a
unittest TestCase in a new file tests/test_directory_layout.py:

test_directory_layout.py
import unittest
from pathlib import Path

class TestDirectoryLayout(unittest.TestCase):
def test_tests_layout_matches_j_park(self):

verify that this file is - itself - in tests/
this_files_path = Path(__file__)
tests_dir = this_files_path.parent
self.assertEqual(tests_dir.name, "tests")

get a path to the j_park/ source directory
j_park_path = Path(tests_dir.parent, "j_park")

loop through all test_*.py files in tests/
(and its subdirectories)
for test_file_path in tests_dir.glob("**/test_*.py"):

skip this file: we don't expect there to be a
corresponding source file for this layout enforcer
if test_file_path == this_files_path:

continue

construct the expected source_path
source_rel_dir = test_file_path.relative_to(tests_dir).parent
source_name = test_file_path.name.split("test_", maxsplit=1)[1]
source_path = Path(j_park_path, source_rel_dir, source_name)

error_msg = (
f"{test_file_path} found, but {source_path} missing."

)
self.assertTrue(source_path.is_file(), msg=error_msg)

The TestCase class TestDirectoryLayout defines a single test method named
test_tests_layout_matches_j_park. Using the pathlib standard library module, the test
method loops through every test_*.py in the tests/ directory and ensures that
the test_*.py file corresponds to a source file. If some of the functions used in
the test shown look unfamiliar, that’s OK. The most important thing to keep
in mind is the strategy of writing a test case that forces you and your team-
mates to follow a pattern and stay organized—that you keep holes out of your
fences. I encourage you to adapt the test into any of your own projects.

If you were to duplicate the preceding directory structure and run the test
using the unittest module

python3 -m unittest tests/test_directory_layout.py❮

you might see a failure message like the following:

AssertionError: False is not true : /home/user/code/tests/test_raptor.py

• Click HERE to purchase this book now. discuss

Keeping Your Source Organized • 7

http://media.pragprog.com/titles/dmpython/code/test_directory_layout.py
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

found, but /home/user/code/j_park/raptor.py missing.

The output indicates that test_raptor.py does not correspond to an actual source
file: it is an orphan. You have successfully added a test that automatically
detects when other tests are out of position and do not correspond to a
source file.

If you repeatedly run the test—fixing the failure messages as you go—your
tests/ directory will eventually match the layout of j_park/ and will be continually
enforced. The eventual output of your corrections will look like the following:

├── j_park
│ ├── __init__.py
│ ├── dinosaurs
│ │ ├── __init__.py
│ │ ├── raptor.py
│ │ └── t_rex.py
│ └── fences
│ ├── __init__.py
│ ├── cable.py
│ └── electrified.py
└── tests

├── __init__.py
├── dinosaurs
│ ├── __init__.py
│ ├── test_raptor.py
│ └── test_t_rex.py
└── fences

├── __init__.py
├── test_cable.py
└── test_electrified.py

Think of other ways you can add unit tests that improve your day-to-day living
experience in a code base. It might be useful to, for example, write a unit test
that enforces any configuration files, CSV files, and so on in your code base
to store their contents in alphabetical order. Having their contents in order
makes the files more pleasant to read and edit. Anytime you catch yourself
writing a comment like # Please keep this list in alphabetical order, consider using
Python’s high level tooling to write a test that mandates the constraint instead.

In the final section of this chapter, we’ll explore a risk a little more direct than
disorganized file systems: wildcard variable shadowing.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

