
Extracted from:

Intuitive Python
Productive Development for Projects that Last

This PDF file contains pages extracted from Intuitive Python, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Intuitive Python
Productive Development for Projects that Last

David Muller

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-823-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Detecting Problems Early
Unlike traditionally compiled languages, Python does not require source code
to be compiled into machine code before it is run. Instead, Python accepts
source code directly and executes it as is. This means that it is possible for
you to, for example, run invalid Python source code that never stands a chance
of executing or working.

To reduce this risk, many Python projects run static analysis tools to help
them validate and verify source code before trying to run it. What are static
analysis tools? Static analysis tools don’t actually run your code, but read it
and inspect it for issues that can be found just by browsing the source code
itself. Kind of like a friend peering over your shoulder as you type and letting
you know when you’ve made a mistake before you’ve even tried to run any-
thing.

In this section we’ll talk about two tools for finding and eliminating bugs in
your programs ahead of time: flake8 and mypy.

Running flake8 to Find Errors
The flake8 static analysis tool detects a number of different errors in Python
source code and flags them for you to fix.22 In this section, we’ll highlight a
select few errors flake8 detects to help you get a sense of flake8’s benefits.

How Do I Run flake8?

flake8 is a third-party package that you can install with Python’s
package manager pip.23 If you’re using this book’s companion
Docker image from Setting Up Your Environment and Using This
Book’s Companion Docker Image, on page ?, flake8 is already
installed and ready to go—just type flake8 --help. If you’re not using
the companion image, we’ll cover how to use pip in Running pip,
on page ?. If you are already comfortable with pip and virtual
environments, feel free to install flake8==3.8.4 and run it. Otherwise,
it’s okay to just follow along as we explore the capabilities of flake8.

Detecting Undefined Variables

flake8 detects, ahead of time, any Python source code that tries to access a
variable that does not exist. For example, variable_does_not_exist.py contains a
variable named oops that is never bound to a value:

22. https://flake8.pycqa.org/en/3.8.4/user/error-codes.html
23. https://pip.pypa.io/en/stable/

• Click HERE to purchase this book now. discuss

https://flake8.pycqa.org/en/3.8.4/user/error-codes.html
https://pip.pypa.io/en/stable/
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

variable_does_not_exist.py
a = 1Line 1

2

`a + oops` will never work:3

Traceback (most recent call last):4

File "variable_does_not_exist.py", line 8, in <module>5

a + oops6

NameError: name 'oops' is not defined7

a + oops8

While variable_does_not_exist.py is valid syntactically, it will never run. a + oops will
always raise an exception because the oops variable doesn’t have a value.

flake8 is able to catch this error ahead of time. If you run flake8 against vari-
able_does_not_exist.py by saying flake8 variable_does_not_exist.py, you’ll see the following
output:

variable_does_not_exist.py:8:5: F821 undefined name 'oops'❮

flake8 reports that it detects an error at line 8 column 5 of variable_does_not_exist.py.
In particular, it detected that the oops variable is not defined (and so vari-
able_does_not_exist.py will not be able to run successfully). Also included in the
output is the code: F821. F821 is the code name flake8 uses to identify this
error—allowing you to find all occurrences of a specific kind of error in your
project.24

While the variable_does_not_exist.py file may seem a little trivial, problems like
these tend to crop up relatively frequently especially as a Python codebase
grows (or when developers decline to write tests for their code). Catching these
errors ahead of time with flake8 spares you from bugs later.

Remove Wildcard Imports

flake8 detects when wildcard (*) imports are used and forbids them. For
example, consider redefine_path.py which subtly and silently clobbers the value
of the path variable:

redefine_path.py
path = "/etc/hosts"Line 1

2

from os import *3

4

print(path)5

If you run python3 redefine_path.py you will receive output like the following:

<module 'posixpath' from '/usr/local/lib/python3.9/posixpath.py'>

24. https://flake8.pycqa.org/en/3.8.4/user/error-codes.html

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dmpython/code/variable_does_not_exist.py
http://media.pragprog.com/titles/dmpython/code/redefine_path.py
https://flake8.pycqa.org/en/3.8.4/user/error-codes.html
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

Shouldn’t the output have been /etc/hosts? Unfortunately, even though the path
variable was initially bound to /etc/hosts, the path variable is clobbered to a new
value when from os import * is run. This is because the os module itself includes
a path module. So, when * is imported from os, the path module gets bound to
the path variable and the /etc/hosts string effectively disappears without a trace.
(Note that Python aliases os.path to an underlying module of posixpath if you are
running on a POSIX system and ntpath if you are running on Windows).

flake8 forbids this variable clobbering situation from occurring at all. If you
run flake8 redefine_path.py, one of the errors you’ll see is:

redefine_path.py:3:1: F403 'from os import *' used; unable to detect❮

undefined names

flake8 detects an issue at line 3 column 1 saying that a wildcard (*) import is
used, preventing flake8 from detecting undefined names. To resolve this error,
you have to replace the * and import the exact names you are interested in
using. (For example, from os import environ if you wanted to use environ to get and
set operating system environment variables.)

We’ll discuss the dangers of wildcard imports in more detail in Dodging
Wildcard Variable Shadowing, on page ?, but for now its enough to know
that flake8 helps you detect and remove these before they manifest as dangerous
bugs.

Prevent Duplicated Names

flake8 detects when you define a dictionary that repeats the same key multiple
times with different values. Consider, for example, duplicate_dict_keys.py that
defines two different values for the "pi" key in my_dict:

duplicate_dict_keys.py
my_dict = {"pi": 3.14, "pi": "apple"}Line 1

2

is this `3.14 * 5` or `"apple" * 5` ??3

print(my_dict["pi"] * 5)4

The existing code is—at best—ambiguous. Should my_dict["pi"] return 3.14, or
should it return "apple"? At the end of the day, a dictionary data structure only
allows the "pi" key to appear once, so only one of 3.14 and "apple" will actually
stick and win out as the value.

If you run flake8 duplicate_dict_keys.py, flake8 will catch and suggest you fix the key
duplication ahead of time:

duplicate_dict_keys.py:1:12: F601 dictionary key 'pi' repeated with❮

different values
duplicate_dict_keys.py:1:24: F601 dictionary key 'pi' repeated with

• Click HERE to purchase this book now. discuss

Detecting Problems Early • 3

http://media.pragprog.com/titles/dmpython/code/duplicate_dict_keys.py
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

different values

flake8 indicates the two locations on line 1 that assign the 'pi' key to a different
value and suggests you address the duplication. Again, while the dupli-
cate_dict_keys.py example may feel a little contrived because it is so small, this
check becomes especially helpful when your codebase defines many dictionary
literals—especially ones with dozens, hundreds, or even thousands of keys.

Prevent Duplicated Names Part 2: Tests

flake8 uses a similar duplicate detection scheme that can help you catch issues
with tests as well.

After introducing flake8 to a codebase at a new job, I was simultaneously
relieved and horrified when flake8 detected some tests that were being implic-
itly skipped. Consider the following simplified example of a unittest TestCase that
tests math operations:

duplicate_tests.py
import unittestLine 1

2
3

class TestMath(unittest.TestCase):4

def test_add_1(self):5

self.assertEqual(1 + 1, 2)6

7

def test_add_1(self):8

self.assertEqual(1 - 1, 0)9

duplicate_tests.py defines a TestCase class named TestMath that—supposedly—tests
that both 1 + 1 = 2 and 1 - 1 = 0. Unfortunately, if you actually run this test file
with the unittest standard library module, you’ll see that only one test runs:

python3 -m unittest duplicate_tests.py

.❮

--
Ran 1 test in 0.000s

OK

The test output indicates that it only Ran 1 test despite our code defining two
tests. Similar to the duplicate dictionary key example shown earlier, only one
method of a given name can ultimately bind to a class object. In this case
there are two methods named test_add_1 that each try to bind to the TestMath
class. However, since only one of the test_add_1 methods can get bound to the
class, only one test actually runs.

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dmpython/code/duplicate_tests.py
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

When a large project accumulates many tests, and developers have acciden-
tally written tests that have the same name, it’s easy to miss this kind of
problem. It’s dangerous when code that developers thought was covered with
tests actually isn’t.

flake8 helps you avoid skipping tests by flagging the duplicated names. If you
run flake8 duplicate_tests.py, you’ll see an error message like this:

duplicate_tests.py:8:5: F811 redefinition of unused 'test_add_1' from line 5❮

flake8 notes that test_add_1 has been redefined on line 8. If you fix this issue
by, for example, changing the name of the test on line 8 to test_subtract_1, flake8
will stop complaining and two tests will run:

duplicate_tests_fixed.py
import unittestLine 1

2
3

class TestMath(unittest.TestCase):4

def test_add_1(self):5

self.assertEqual(1 + 1, 2)6

7

def test_subtract_1(self):8

self.assertEqual(1 - 1, 0)9

After renaming the second test_add_1 to test_subtract_1, using the unittest module
to execute the tests results in both tests actually executing:

python3 -m unittest duplicate_tests_fixed.py

..❮

--
Ran 2 tests in 0.000s

OK

Running Additional Checks with flake8-bugbear

There a number of available add-ons that you can use to augment flake8. I
highly recommend one add-on in particular: flake-bugbear. flake8-bugbear25 allows
flake8 to detect a few more classes of errors and mistakes. In particular, flake8-
bugbear automatically flags instances of the mutable default argument trap
and helps you eliminate them from your codebase. The mutable default
argument trap is covered in Binding Early: Problems with Default Arguments,
on page ?. Don’t worry too much about the mutable default argument trap
now—just know that flake8-bugbear will help you automatically eliminate it.

25. https://pypi.org/project/flake8-bugbear/

• Click HERE to purchase this book now. discuss

Detecting Problems Early • 5

http://media.pragprog.com/titles/dmpython/code/duplicate_tests_fixed.py
https://pypi.org/project/flake8-bugbear/
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

Any Python project should use flake8 and flake8-bugbear to prevent errors in its
code. I highly recommend adding flake8 and flake8-bugbear to your development
flow (for example, in your continuous integration server) to prevent committing
code with bugs that flake8 can spare you from. (Be sure to run flake8 with its
--select=F option if you want to ignore flake8's style suggestions and only enable
its error detection.26)

In the next section we’ll introduce another tool that belongs in your Python
development flow: mypy.

26. https://flake8.pycqa.org/en/3.8.4/user/violations.html#selecting-violations-with-flake8

• 6

• Click HERE to purchase this book now. discuss

https://flake8.pycqa.org/en/3.8.4/user/violations.html#selecting-violations-with-flake8
http://pragprog.com/titles/dmpython
http://forums.pragprog.com/forums/dmpython

