
Extracted from:

Build Chatbot Interactions
Responsive, Intuitive Interfaces with Ruby

This PDF file contains pages extracted from Build Chatbot Interactions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build Chatbot Interactions
Responsive, Intuitive Interfaces with Ruby

Daniel Pritchett

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-632-7
Book version: P1.0—June 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 11

Send Messages with SMS and Email
As a bot owner or career software developer, you can expect to send and receive
plenty of emails, text messages, and other alerts. Because chat is a conversa-
tional medium, sending and receiving messages with Lita is a natural fit.

In this chapter, you’ll build two similar message-sending Lita skills as you learn
how to push messages beyond the confines of your bot and out into the real
world. By the end of this chapter, you’ll have a firm grasp on two of the most
common communication media for automation: emails and SMS messages.

Use Twilio to Send Text Messages
Twilio is a service that provides powerful API access to send and receive phone
calls and text messages. The possibilities for group calls and texts, scripted
answering services, and voicemail recording are quite broad. Even non-
developers are likely to encounter Twilio-based products, though they might
not realize it.

Any sort of phone automation you can imagine is plausible with Twilio—from
robocalling to answering to recording to re-routing to messaging; it’s all in
the API. In this section, you get your feet wet by sending text messages through
the service. The first step is signing up for a new account at twilio.com.

Twilio signup is straightforward—you need an email address and a credit
card. Don’t worry about a charge yet; Twilio includes promotional credits for
first-time users. The promotional credits cover the small monthly fee for
renting the phone number that sends your messages, as well as a per-message
fee for sending text messages.

Once you’re registered, you need to claim a local phone number that Twilio
can use for sending outbound messages. The first screenshot on page 6
shows the confirmation dialog for selecting a Memphis-area number.

• Click HERE to purchase this book now. discuss

http://twilio.com
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

Send a text message with the Twilio API
Armed with your first Twilio outbound phone number, you can move right
into sending your first Twilio-powered text message. Like most of the APIs
used in this book, the core is a single HTTP transaction. Twilio’s docs are
particularly good at guiding you to this first successful transaction, including
a cURL command tailored to send a message with your newly registered
account. Copy and paste the command from your browser—it’ll look like the
following screenshot—and run it in your terminal.

When you execute the command, you see a JSON response detailing the
successful delivery. You should also receive the sample text message at the
destination number you supplied.

Here’s a sample Twilio response from a successful SMS delivery.

n.b. api keys and message IDs truncated to fit the page
{

"sid": "SM4625ac9f0cda43c7a36c92e9212c06ef",
"date_created": "Sun, 19 Nov 2017 20:42:59 +0000",

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

"date_updated": "Sun, 19 Nov 2017 20:42:59 +0000", "date_sent": null,
"account_sid": "user_id_redacted", "to": "+12135551234",
"from": "+19014727826", "messaging_service_sid": null,
"body": "Sent from your Twilio trial account - Hello reader!",

"status": "queued",
"num_segments": "1", "num_media": "0", "direction": "outbound-api",
"api_version": "2010-04-01", "price": null, "price_unit": "USD",

"error_code": null,
"error_message": null,
"uri": "/2010-04-01/Accounts/user_id_redacted/Messages/SMxxx.json",
"subresource_uris":

{
"media": "/2010-04-01/Accounts/id_redacted/Messages/SMxxx/Media.json"

}
}

Your next task is to create a new Lita handler skill that leverages Twilio’s
Ruby gem to send text messages on demand.

Configure a Twilio handler for Lita
As with every user-facing Lita skill, you need to generate a new handler that
listens for a specific pattern of input and responds with some relevant Ruby
automation. In this case, your input looks like “send a text message,” and
the automation shuffles the text message off to Twilio’s API.

Start by creating a new Lita handler skill:

$ lita handler twilio-texter

Switch into the newly created lita-twilio-texter folder and complete the empty
parts of your gemspec file. Be sure to add the dependency on twilio-ruby to your
own gemspec as demonstrated on line 11.

lita-twilio-texter.gemspecLine 1

-

Gem::Specification.new do |spec|-

spec.name = "lita-twilio-texter"-

5

... snipped boilerplate ...-

-

spec.add_runtime_dependency "lita", ">= 4.7"-

-

don't forget this part!10

spec.add_runtime_dependency 'twilio-ruby', '~> 5.5'-

-

... snipped more boilerplate ...-

end-

• Click HERE to purchase this book now. discuss

Use Twilio to Send Text Messages • 7

http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

Build and test the Twilio handler
The Twilio gem’s documentation1 walks you through the basics of setting up
a Twilio connection and sending a message from Ruby. Connecting to Twilio
requires an account SID and an auth token. You can think of these as a
username and password. These credentials are available from the Twilio web
UI, and you’ll see them as HTTP parameters in the cURL command you just
sent to test your first message.

Connect to Twilio from Ruby

Set up the Twilio connection inside the lita-twilio-texter handler file:

lib/lita/handlers/twilio_texter.rb

config :twilio_sid, default: ENV['TWILIO_ACCOUNT_SID']
config :twilio_token, default: ENV['TWILIO_AUTH_TOKEN']

def client
@_client ||= Twilio::REST::Client.new(

config.twilio_sid,
config.twilio_token

)
end

With this code, you:

• Provide a way for the calling code (your Lita bot) to inject Twilio credentials
with either Lita config variables or regular environment variables.

• Create a RESTful Twilio connection object with the :client method.

• Store a connection as a reusable instance variable.

• Return the connection for in-line use.

The code that calls the :client method eventually reads something like this:

client.send_text_message(from: me, to: you, body: user_supplied_message).

Next, you need a simple test to verify that the returned client object looks correct.

spec/lita/handlers/twilio_texter_spec.rb

describe ':client' do
it 'should return a logged-in Twilio client' do

clt = subject.client
expect(clt.account_sid.empty?).to be_falsey
expect(clt.auth_token.empty?).to be_falsey

end
end

1. https://github.com/twilio/twilio-ruby

• 8

• Click HERE to purchase this book now. discuss

https://github.com/twilio/twilio-ruby
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

This test verifies that the returned object has a non-blank login and password
and implicitly affirms that calls to the :client don’t throw an exception. If
everything passes, you can be confident that your Twilio client is configured
correctly and available for the SMS sending code you’re about to write.

Use a Ruby Connection to Send a Twilio SMS

With a properly configured Twilio client object, you’re ready to send your first
Twilio SMS from within Ruby. Copy the following example code to provide a
:send_twilio_sms call that accepts a destination phone number and a message body.

lib/lita/handlers/twilio_texter.rb

def send_twilio_sms(to:, body:)
response = client.api.account.messages.create(

from: send_from_number,
to: to,
body: body

)
end

def send_from_number
client.incoming_phone_numbers.page.first.phone_number

end

Note the inclusion of the :send_from_number helper method. This code is necessary
because Twilio’s API supports high-volume users with a pool of phone numbers
available to them. For your bot, however, you only need one, so the code
lazily picks the first available number. In a more sophisticated application,
you might choose numbers based on proximity to the end user or other
business rules.

You can use the following tests to verify that things are working as intended.
Note, however, that these tests—as written—are dependent on hard-coded
phone numbers. In production, and for more robust tests, you may want to
inject known good numbers at runtime or use an HTTP testing library like
WebMock.2

spec/lita/handlers/twilio_texter_spec.rb

your phone number goes here
twilio insists you text 'verified' numbers during trial
describe ':send_twilio_sms' do

it 'should work' do
response = subject.send_twilio_sms(

to: '+12135551234',
body: 'hi from lita test')

2. https://github.com/bblimke/webmock

• Click HERE to purchase this book now. discuss

Use Twilio to Send Text Messages • 9

https://github.com/bblimke/webmock
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

expect(response.error_code).to eq(0)
expect(response.status).to eq("queued")

end
end

also dependent on your trial number's area code
describe ':send_from_number' do

it 'should return my trial number' do
number = subject.send_from_number
expect(number.start_with?('+1213')).to be_truthy

end
end

By verifying that the returned objects are at least behaving like properly
instrumented Twilio API objects, you can be somewhat sure your bot’s ready
to go.

Enable Lita users to send SMS messages using a Twilio wrapper

Your Ruby handler code now has an entry point for your Lita skill, and your
users’ Lita invocation will look like this:

Lita text 12135551234 hi mom

The following code is similar to other Lita handlers from earlier chapters: this
time, it includes a route matcher and a handler method—:send_text—to receive
the matches.

lib/lita/handlers/twilio_texter.rbLine 1

-

route /^text\s+(\d+)\s+(.+)$/i,-

:send_text,-

command: true,5

help: { 'text 12135551234 hi mom' =>-

'texts "hi mom" to a fake number in California' }-

-

def send_text(message)-

_, to, body = message.match_data.to_a10

results = send_twilio_sms(to: to, body: body)-

-

message.reply "Sent message to #{to}"-

end-

Note that on line 3, the matcher expression triggers on the leading word “text,”
captures the number immediately following, and then captures the remainder
of the input as the body of the text message; and on line 10, is a bit of Ruby
destructuring (teasing the contents of a data structure apart into multiple
variables) to parse the needed parts out of the regex match for safekeeping.
The underscore (_) means you’re purposefully discarding the first element in
the match array.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

To verify that things are working, you need some tests.

spec/lita/handlers/twilio_texter_spec.rb

describe ':text' do
it { is_expected.to route("Lita text 12134441234 hi mom") }
it { is_expected.to_not route("Lita text hi mom") }

it 'sends texts' do
send_message 'Lita text 12135551234 hey daniel'
expect(replies.last).to eq('Sent message to 12135551234')

end
end

This test asserts that the Lita text [number] [message] handler catches properly
formed inputs. It also asserts that Lita’s reply to a valid request includes the
expected response.

• Click HERE to purchase this book now. discuss

Use Twilio to Send Text Messages • 11

http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

