
Extracted from:

Web Development with Clojure,
Third Edition

Build Large, Maintainable Web Applications Interactively

This PDF file contains pages extracted from Web Development with Clojure, Third
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Web Development with Clojure,
Third Edition

Build Large, Maintainable Web Applications Interactively

Dmitri Sotnikov
Scot Brown

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-682-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
The cover of this book has a bonsai tree on it. We chose it to represent elegance
and simplicity because these qualities make Clojure such an attractive lan-
guage. A good software project is like a bonsai. You have to meticulously craft
it to take the shape you want, and the tool you use should make it a pleasant
experience. We hope to convince you here that Clojure is that tool.

What You Need
This book is aimed at readers of all levels. While having some basic proficiency
with functional programming will be helpful, it’s by no means required to
follow the material presented. If you’re not a Clojure user already, this book
is a good starting point since it focuses on applying the language to solve
concrete problems. This means we’ll focus on the small set of language features
needed to build web applications.

Why Clojure?
Clojure is a small language whose primary goals are simplicity and correctness.
As a functional language, it emphasizes immutability and declarative program-
ming. As you’ll see, these features make it easy and idiomatic to write clean
and correct code.

Web development has many languages to choose from and as many opinions
on what makes a language “good.” Some languages are simple but verbose.
You’ve probably heard people say that verbosity doesn’t matter—that if two
languages are Turing complete, anything that can be written in one language
can also be written in the other with a bit of extra code. We think that’s
missing the point.

The real question isn’t whether something can be expressed in principle; it’s
how well the language maps to the problem being solved. One language lets
you think in terms of your problem domain, while another forces you to
translate the problem to its constructs.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

The latter is often tedious and rarely enjoyable. You end up writing a lot of
boilerplate code and constantly repeating yourself. There’s a certain irony in
having to write repetitive code.

At the other extreme, some languages are concise because they provide many
different tools for solving problems. Unfortunately, this vast array of tools
brings different problems.

The more features a language has, the more things you have to keep in your
head to work with the language effectively. Soon we find ourselves constantly
expending mental overhead thinking about all the different features and how
they interact with one another.

What really matters is whether you can use a language without thinking
about it. When a language is lacking in expressiveness, you become acutely
aware that you’re writing code that you shouldn’t be. On the other hand,
when a language has too many features, it can feel overwhelming and it’s
easy to get distracted playing with them.

To make an analogy with mathematics, understanding a few fundamental
theorems and their implications is far more useful than rote memorization
of specific formulas.

This is where Clojure comes in. It allows us to easily derive a solution to a
particular problem from a small set of general patterns. All you need to become
productive is to learn a few simple concepts and a bit of syntax. These concepts
can then be combined in myriad ways to solve all kinds of problems.

Why Make Web Apps in Clojure?
Clojure boasts tens of thousands of users across hundreds of companies; it’s
used in a wide range of settings, including banks and hospitals. Clojure is
likely the most popular Lisp dialect today for starting new development. It
has proven itself in serious production systems, and the feedback from users
has been overwhelmingly positive.

Because web development is one of the major domains for using Clojure,
several popular libraries and frameworks have sprouted and matured in this
area. In this book we’ll primarily focus on the Luminus stack. The following
chapters will teach you how to use Clojure and Luminus to build web appli-
cations effectively.

Many platforms are available for doing web development, so why should you
choose Clojure over other options?

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

Well, consider those options. Many popular platforms force you to make trade-
offs. Some platforms lack performance, others require a lot of boilerplate, and
others lack the infrastructure necessary for real-world applications.

Clojure addresses the questions of performance and infrastructure by being
a hosted language. The Java Virtual Machine (JVM) is a mature and highly
performant environment with great tooling and deployment options. Clojure
brings expressive power akin to that of Ruby and Python to this excellent
platform. When working with Clojure you won’t have to worry about being
limited by your runtime when your application grows.

Additionally, Clojure isn’t limited to the server. It can be compiled into Java-
Script that is on par with popular front-end frameworks. Most web platforms
require to learn and write JavaScript as well. With Clojure, you have a common
toolset for both client and server.

The most common way to handle the boilerplate in web applications is by
using a framework. Examples include Ruby on Rails, Django, and Spring.
The frameworks provide the canned functionality needed for building a
modern site.

The benefits these frameworks offer also come with inherent costs. Since
many operations are done implicitly, you have to memorize what effects any
action might have. This opaqueness makes your code more difficult to reason
about. When you need to do something that’s at odds with the framework’s
design, it can quickly become awkward and difficult. You might have to dive
deep into the internals of that framework and hack around the expected
behaviors.

Instead of using frameworks, Clojure makes a number of powerful libraries
available, and we can put these libraries together in a way that makes sense
for our particular project. As you’ll see, we manage to avoid having to write
boilerplate, while retaining the code clarity we desire. As you read on, we
think you’ll agree that this model has clear advantages over the framework-
based approach.

Our goal is to give you both a solid understanding of the Clojure web stack
and the expertise to quickly and easily build web applications using it. The
following chapters will guide you all the way from setting up your development
environment to creating a complete real-world application. We’ll show you
what’s available and then guide you in structuring your application using the
current best practices.

• Click HERE to purchase this book now. discuss

Why Make Web Apps in Clojure? • vii

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

How to Read This Book
Before you get started, we should cover some conventions used in this book.

Throughout the book, we iteratively improve the applications we’re working
on with instructiveness as our primary goal. You’ll see the top-level directory
of files change periodically. This is intentional and is done to provide different
stages of development for a single app. We recommend working along with
your own version of the application and trying different variations of the
examples provided. This will help you to get a feel for how things work and
what alternatives are possible to what we present here. If you encounter any
issues, you can compare your code against our version. The source code used
throughout the book can be found on the Pragmatic Programming website.1

We strongly recommend experimentation in the REPL. This is by far the best
way to develop your skill with Clojure.

1. https://pragprog.com/titles/dswdcloj3/web-development-with-clojure-third-edition/

Introduction • viii

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/dswdcloj3/web-development-with-clojure-third-edition/
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

