PragmaticBookshelf

o o o
simplicit
sustainable, humane, and
effective software development

dave thomas

edited by)
Susannah Davidson

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Cut Back on Unhealthy Dependencies
-)

It’s late 2024. I just created a new Phoenix project using mix phx.new my_project.
It had 43 dependencies, which came in at 15MB.

A new Rails project installs 83 gems, and these in turn load hundreds more.
Here’s a dependency graph of a basic Rails app.

s =9
pr—— Comn
oot
<>

npx create-react-app my-app downloaded 874 modules (about 350MB of code) for
a basic React app. I had time to make a cup of tea.

I'm not claiming that React is bloated compared to the others. I'm saying that
they all are carrying around a lot of baggage. And these are the numbers for
baseline, empty projects. As you start adding code, you’'ll be adding dependen-

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

o4

cies of your own (and those dependencies will have their own dependencies,
and so on).

I hate dependencies—every last one of them.

Every dependency I use gives control of a part of my future to a tree of third
parties, people I probably don’t know, can’t control, and in reality can’t even
trust. There are probably tens of thousands of people who've contributed to
the 874 modules that React uses out of the box. It only takes one of them to
break my app.

Every dependency gives away control of part of your app

In March 2016, Azer Koculu, a prolific developer of JavaScript libraries,
suddenly removed all of them from the NPM repository. Among these modules
was one named left_pad which, not surprisingly, added padding characters to
the start of a string until it reached a given length.

The left-pad library was used by many thousands of other libraries, and these
in turn by even more libraries. These second-order libraries included main-
stays of the JavaScript world such as Babel and React.

One developer’s decision rendered a significant proportion of JavaScript apps
unbuildable.

In March 2024, a global warning (CVE-2024-3094) was issued after malicious
code was found embedded in the XZ compression library. This was particu-
larly concerning because the library was used by the OpenSSH daemon code,
potentially compromising what was assumed to be a secure data transport.

When you add a dependency to your code, you're inviting a bunch of develop-
ers into your project, giving them access to your runtime. And these developers
don’t have to be malicious to cause problems: they can change APIs, deprecate
features, or accidentally add security vulnerabilities.

My Personal Dependency Hell

In 2023 I came back to the Pragmatic Bookshelf after a seven-year break only
to discover that the software that was the backbone of our business had
effectively been unmaintained. It was still running Rails 3 (Rails is currently
at version 8).

No problem, I thought, I'll migrate it up to the latest Rails, one release at a
time.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

Cut Back on Unhealthy Dependencies ¢ 5

Except Rails 3 uses a library that used a library that... was totally different
on modern machines. I couldn’t even build the Rails 3 gems. I tried just
updating blindly, only to discover that Rails had so many breaking changes
between all these releases that I couldn’t even get the app to start.

In the end, the only thing I could do was create a Docker container running
an eight-year—old version of Linux that still had the old libraries. After a
frustrating week, I finally had the most complex (and fragile) development
environment I've ever used. I'm still managing the fallout as we migrate away.

Simplifying Dependencies
Remember the leftpad fiasco? Here’s the entire code from the library:

module.exports = leftpad;
function leftpad (str, len, ch) {
str = String(str);
var i = -1;
if (!ch & ch !'==0) ch ="' ';
len = len - str.length;
while (++i < len) {
str = ch + str;

}

return str;

}

It’s 11 lines of fairly ugly code; the line str = ch + str gives me garbage-collection
nightmares.

Somewhere out, there are developers who thought “I need to left pad this
string,” and who then took the time to search for a library, add it to their
build, and work out how to import and use it. It probably took them three
times as long as it would have done to write it themselves.

Today, padstart is built into JavaScript. Even if it weren’t, a decent implemen-
tation could be just 3 lines of code:

function leftpad (str, len, ch=" ") {
str = String(str);
len = len - str.length;
return (len > 0) ? ch.repeat(len) + str : str;

Eleven lines of code should not be a dependency

I know: this is an extreme case. But it’s still useful to think about why folks
chose to find a library for something so trivial. They probably were under time

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

°6

constraints, although in this case finding the library probably took longer
than writing the code.

They may also have fallen into the someone-else’s-problem trap. Delegating
code to the author of a library means that they’re not responsible for any
problems.

Obviously I need to add dependencies to my project: I'm not going to write an
SSH library from scratch; that would be ridiculous. But there’s a trade-off to
be made: adding a dependency today may solve a problem today. At the same
time, it adds complexity for future-me in terms of risk and maintenance.

Isolating Dependencies

In the past, I've been bitten by dependencies that I use extensively through
an app changing their APIs, forcing me to update code across multiple source
files.

Now, if possible, whenever I use a dependency widely in an app, I wrap it in
a simple function, and use that function in the rest of the code. That way, if
the API changes, I might be able to get away with updating just the wrapper
function.

The Dependency Decision Chain

Before adding a dependency to a project, I consider:

Do | need the functionality?

Younger Dave often added a new dependency after I read about some cool
new feature online. I did it because it looked interesting, not because my
project absolutely needed it.

Now I try to have the discipline not to experiment like that; if my project will
work without it, I won’t add it. Remember that “less is more.” (Of course,
there’s nothing to stop me from playing around with it in my spare time....)

Is it easier just to code it?

Increasingly, I find myself not using dependencies if all I need from them is
a single function. If I can write it myself, I do. If the library is open source
and the license permits, I might copy the function (with attribution) into my
own code, where I can examine it and also update it to fit the project’s needs
better.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

Cut Back on Unhealthy Dependencies ¢ 7

Am | buying a jungle?

Joe Armstrong said about dependencies “You wanted a banana but what you
got was a gorilla holding the banana and the entire jungle.” Sometimes the
functionality I want comes with a lot of baggage. Maybe I just need to escape
HTML strings but the library I found contains an entire HTML parsing and
creation system, along with a dozen external dependencies for things like
parsing, indentation, and so on.

All that extra cruft is a liability. I may not be using it, but it still contributes
to the code that I might be fighting with in the future.

Is this vital to my project?

If so, I'd better make sure I have a local copy of it. There’s nothing quite like
that sinking feeling of getting a 404 when you try to fetch something your
project needs.

Am | locked to a particular version?

I always use a dependency manager for the libraries I use. I also use one for
the tools. (Right now I use asdf to manage tools for me; I know, I know, the
cool kids use Nix...). Both of these allow me to specify the versions of every-
thing I use when creating a project.

That’s fine for a while, but eventually there’ll come a day when I try to add
one more dependency, and it relies on a newer version of some dependency
I already have. I update that dependency, but then break the dependency
requirements for 5 more libraries. Sometimes the most innocuous addition
can end up causing an update that ripples through half my dependencies.
And, when I make those updates, I'm hoping that my tests will cover the
obscure corner cases that might break.

During development, I got into the habit of updating my dependencies daily
or weekly, banking on the idea that smaller steps will be easier to handle.
But this doesn’t help down the road, after I've moved on. When I come back
to a project after only a year or so I assume I'm going to be battling with
dependencies for a while before I can start being productive.

And because dependencies depend on each other too, each additional
dependency will cost you a more than linear amount of time down the road.

Am | secure?

Many library repositories monitor for reported security vulnerabilities in the
libraries they host. When you install a JavaScript library using NPM, for

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

°8
example, it will perform a quick audit of all your packages, and not just the

ones you're installing.

~~~ session $ npm add jest npm warn deprecated glob@7.2.3: Glob versions
prior to v9 are no longer supported

added 275 packages, and audited 310 packages in 13s
33 vulnerabilities (6 moderate, 19 high, 8 critical)
Run npm audit for details. ~~~

In this example, the deprecation warning is caused by adding Jest, but the
33 vulnerabilities were all in existing packages.

During development, I see these reports whenever I refresh my dependencies.
After that time, I get warnings from GitHub if it notices a security issue in
my code base.

Make each dependency a deliberate choice

My Current Practices
e I don’t use a whole dependency for just a single function.
e ] don’t use a dependency for something I could simply write.
e ] try to keep dependencies updated during development.

e | spend a little time checking the provenance of dependencies before
adding them.

What | Should Also Do

¢ Investigate services which monitor the security status of dependencies.

e Set aside a day a quarter to fetch and build old projects, updating their
dependencies if possible.

Investigate
Open up your current project and have a look at all the top-level dependencies (the ones you and

your team have declared).

+ Do you know what each does?
+ Do you know how your code is using each? Is that use trivial? Can you remove the dependency
and simply implement the functionality you were using?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

Cut Back on Unhealthy Dependencies ¢ 9

Now look at the list of all the dependencies (not just the ones you explicitly included). These will
typically be in something like a .lock file.

« How many are there?
« Does that number scare you?
+ Are you going to do something about it?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

