
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Practice 26

Simplify Logic With State Machines

Table-driven code is great for simplifying repetitive sequences of code. State
machines take this to the next level by adding context and the ability to decide
dynamically which code to run in a given situation,

(You may see state machines referred to as Finite State Automata (FSA) or
Finite State Machines (FSM).)

However, there’s a lot of FUD spread directed at state machines. As a result
many developers avoid them. That’s just plain silly—a simple state machine
can make your code far easier to understand and change.

You don’t need libraries or design patterns to write a state
machine

Idea 63

I use state machines all the time, and they have only ever improved the code
I was working on. Here are a few examples:

• Parsing

I needed to parse a file that was almost in comma separated variable
(CSV), but it used backslash to escape characters.

• Extracting information from a Shopify Order

Shopify orders are complex beasts, with many record type and intricate
rules. A state machine helped me make sure the correct information was
presented in the right order.

• Handling order fulfillment

A simple state machine handled the changes in an order’s fulfillment
status, generating shipments, refunds, and notification as needed.

• Detecting patterns in log messages

I had to analyze web server log messages in real time, looking for times
where a particular URL was accessed three times within five seconds from
the same IP address. Many such patterns could overlap in the stream of

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

messages. This turned out to be really simple using a set of dynamically
generated state machines.

The list goes on.

Whenever you are handling a sequence of events, where each event affects
how the next event should be handled, consider using a state machine. If
these events are spread out over time, with potentially long delays between
each, the case for using a state machine is even more compelling. They’ll
make your life simpler.

Implementing State Machines
There’s no need for complex libraries or long-winded pattern-based
approaches when you need a state machine. All you need is a lookup table.

Let’s start with a really simple state machine—a push-button pen. Each time
you press the button, the tip extends if it was retracted and retracts if it was
extended.

A state machine is defined by events, states, and transitions. The machine
sits in a particular state until an event comes along. This may cause a tran-
sition into a different state.

In the case of our retractable pen, we have:

• One event type: the button was pressed.
• Two states: extended and retracted.
• Two transitions: extended→retracted and retracted→extended.

If you click the top when the pen is extended, it transitions to being retracted,
and if you click it when it’s retracted, it transitions to extended.

We draw state machines with the states in boxes or circles, and the transitions
as arrows between states. The transitions are labelled with the event that
triggers them.

Here’s a state machine diagram that describes our retractable ball-point pen.

Pen is extended Pen is retracted

Click

Click

This is a really simple diagram, but when they get more complicated, I like
to see how they work by putting my finger on a state and then imagining an
incoming event. I find the arrow labelled by that event, and my finger follows
it to the next state.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

What about the implementation? Well, this particular state machine is so
simple that all we need is a boolean:

let penRetracted = true

eventStream.on("click", () => {
penRetracted = !penRetracted

}

It may not look like much, but that’s a working state machine. Still, let’s get
a little more complicated.

A More Complicated Example: A Keypad Lock
Here’s a keypad lock. It opens when you press 1 → 5 → 9 in
sequence.

• The user can press any number of keys before entering the
correct sequence.

• If they enter a wrong digit, they must start over.
• If they enter 1 in the middle of a valid sequence, it should

reset the sequence.

Try It
Before looking at the state diagram below, try sketching your own version. Use the
finger technique do make sure it correctly unlocks given the sequences 159, 432159,
15159.

Here’s my version of the state diagram:

Wait for
first digit

Wait for
second digit

1

other

other 1

Wait for
third digit

5

Unlocked

9

1

other

The trick is returning to the “wait for second digit” state if a 1 is pressed in
the middle of what started as a valid sequence.

Implementing the Keypad Lock

To implement this, I’d use a lookup table (a dictionary, hash, map, or object,
depending on your language).

fsm/159.rb
TRANSITIONS = {

• Click HERE to purchase this book now. discuss

Simplify Logic With State Machines • 5

http://media.pragprog.com/titles/dtcode/code/fsm%2F159.rb
http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

"wait_for_first_digit" => {
"1" => "wait_for_second_digit",
"other" => "wait_for_first_digit",

},

"wait_for_second_digit" => {
"5" => "wait_for_third_digit",
"1" => "wait_for_second_digit",
"other" => "wait_for_first_digit",

},

"wait_for_third_digit" => {
"9" => "unlocked",
"1" => "wait_for_second_digit",
"other" => "wait_for_first_digit",

},

"unlocked" => NIL
}

The entire state transition logic is encapsulated in this data structure.

• Each state is a key in the dictionary.

• The values are nested maps that define what state to transition to based
on incoming input.

The code that handles this is trivial

fsm/159.rb
state = "wait_for_first_digit"
while TRANSITIONS[state] && key = gets()

key = key.strip
state = TRANSITIONS[state][key] || TRANSITIONS[state]["other"]➤

end

In fact, the actual state machine implementation is just one line of code (it
has the arrow in the margin).

But Wait, There’s More
At this point I could dive deep into all the other cool things you can do with
state machines. You can encode actions to take on each transition into the
table. You can have long running state machines, which persist their state
between events. You can use state machines to drive workflows. And you can
turn much of the stuff that happens inside your code into events, meaning
you can use state machines to implement the logic of handling them.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dtcode/code/fsm%2F159.rb
http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

But that’s way too much detail for this book. If you’re interested (of course
you are) I have an article about it.1

1. https://open.substack.com/pub/pragdave/p/simplify-logic-with-state-machines

• Click HERE to purchase this book now. discuss

Simplify Logic With State Machines • 7

https://open.substack.com/pub/pragdave/p/simplify-logic-with-state-machines
http://pragprog.com/titles/dtcode
http://forums.pragprog.com/forums/dtcode

