Extracted from:

Python Companion to Data Science

Collect — Organize — Explore — Predict — Value

This PDF file contains pages extracted from Python Companion to Data Science,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr. ema‘u’c

ograimimers

Data Science
Essentials

in Python

Collect >
Organize >
Explore >
Predict >
Value

e ST

Dmitry Zinoviev
edited by Katharine Dvoralk

Python Companion to Data Science

Collect = Organize - Explore — Predict - Value

Dmitry Zinoviev

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-184-1

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my beautiful and most intelligent wife
Anna; to our children: graceful ballerina
Eugenia and romantic gamer Roman; and to
my first data science class of summer 2015.

And | spoke to them in as many languages as | had the least
smattering of, which were High and Low Dutch, Latin, French,
Spanish, Italian, and Lingua Franca, but all to no purpose.

Jonathan Swift, Anglo-Irish satirist

CHAPTER 2

Core Python for Data Science

Some features of the core Python language are more important for data
analysis than others. In this chapter, you’ll look at the most essential of them:
string functions, data structures, list comprehension, counters, file and web
functions, regular expressions, globbing, and data pickling. You'll learn how
to use Python to extract data from local disk files and the Internet, store them
into appropriate data structures, locate bits and pieces matching certain
patterns, and serialize and de-serialize Python objects for future processing.
However, these functions are by no means specific to data science or data
analysis tasks and are found in many other applications.

It’s a common misunderstanding that the presence of high-level programming
tools makes low-level programming obsolete. With the Anaconda distribution
of Python alone providing more than 350 Python packages, who needs to split
strings and open files? The truth is, there are at least as many non-standard
data sources in the world as those that follow the rules.

All standard data frames, series, CSV readers, and word tokenizers follow the
rules set up by their creators. They fail miserably when they come across
anything out of compliance with the rules. That’s when you blow the dust off
this book and demote yourself from glorified data scientist to humble but very
useful computer programmer.

You may need to go as far “down” as to the string functions—in fact, they are
just around the corner on page 8.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

°8

Unit4

Understanding Basic String Functions

A string is a basic unit of interaction between the world of computers and the
world of humans. Initially, almost all raw data is stored as strings. In this
unit, you’ll learn how to assess and manipulate text strings.

All functions described in this unit are members of the str built-in class.

The case conversion functions return a copy of the original string s: lower()
converts all characters to lowercase; upper() converts all characters to upper-
case; and capitalize() converts the first character to uppercase and all other
characters to lowercase. These functions don’t affect non-alphabetic charac-
ters. Case conversion functions are an important element of normalization,
which you’'ll look at on page ?.

The predicate functions return Tue or False, depending on whether the string s
belongs to the appropriate class: islower() checks if all alphabetic characters are
inlowercase; isupper() checks if all alphabetic characters are in uppercase; isspace()
checks if all characters are spaces; isdigit() checks if all characters are decimal
digits in the range 0-9; and isalpha() checks if all characters are alphabetic
characters in the ranges a-z or A-Z. You will use these functions to recognize
valid words, nonnegative integer numbers, punctuation, and the like.

Sometimes Python represents string data as raw binary arrays, not as char-
acter strings, especially when the data came from an external source: an
external file, a database, or the web. Python uses the b notation for binary
arrays. For example, bin = b"Hello" is a binary array; s = "Hello" is a string.
Respectively, s[0] is 'H' and bin[0] is 72, where 72 is the ASCII charcode for the
character 'H'. The decoding functions convert a binary array to a character
string and back: bin.decode() converts a binary array to a string, and s.encode()
converts a string to a binary array. Many Python functions expect that binary
data is converted to strings until it is further processed.

The first step toward string processing is getting rid of unwanted whitespaces
(including new lines and tabs). The functions Istrip() (left strip), rstrip() (right
strip), and strip() remove all whitespaces at the beginning, at the end, or all
around the string. (They don’t remove the inner spaces.) With all these
removals, you should be prepared to end up with an empty string!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Understanding Basic String Functions ® 9

Hello, world! \t\t\n".strip()
= 'Hello, world!'

Often a string consists of several tokens, separated by delimiters such as
spaces, colons, and commas. The function split(delim=") splits the string s into
a list of substrings, using delim as the delimiter. If the delimiter isn’t specified,
Python splits the string by all whitespaces and lumps all contiguous whites-
paces together:

"Hello, world!".split() # Two spaces!
= ['Hello,', 'world!']
"Hello, world!".split(" ") # Two spaces!
= ['Hello,', '', 'world!']
"www.networksciencelab.com".split(".")
= ['www', 'networksciencelab', 'com']

The sister function join(Is) joins a list of strings Is into one string, using the
object string as the glue. You can recombine fragments with join():

, ".join(["alpha", "bravo", "charlie", "delta"])
= 'alpha, bravo, charlie, delta’

In the previous example, join() inserts the glue only between the strings and
not in front of the first string or after the last string. The result of splitting a
string and joining the fragments again is often indistinguishable from
replacing the split delimiter with the glue:

"-".join("1.617.305.1985" .split("."))
= '1-617-305-1985"

Sometimes you may want to use the two functions together to remove
unwanted whitespaces from a string. You can accomplish the same effect by
regular expression-based substitution (which you’ll look at later on page ?).

" ".join("This string\n\r has many\ t\tspaces".split())
= 'This string has many spaces'

The function find(needle) returns the index of the first occurrence of the sub-
string needle in the object string or -1 if the substring is not present. This
function is case-sensitive. It is used to find a fragment of interest in a string
—if it exists.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

°10

"www.networksciencelab.com".find(".com")
= 21

The function count(needle) returns the number of non-overlapping occurrences
of the substring needle in the object string. This function is also case-sensitive.
"www.networksciencelab.com".count(".")

= 2
Strings are an important building block of any data-processing program, but
not the only building block—and not the most efficient building block, either.

You will also use lists, tuples, sets, and dictionaries to bundle string and
numeric data and enable efficient searching and sorting.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Choosing the Right Data Structure ® 11

Unit 5

Choosing the Right Data Structure

The most commonly used compound data structures in Python are lists,
tuples, sets, and dictionaries. All four of them are collections.

Python implements lists as arrays. They have linear search time, which makes
them impractical for storing large amounts of searchable data.

Tuples are immutable lists. Once created, they cannot be changed. They still
have linear search time.

Unlike lists and tuples, sets are not sequences: set items don’t have indexes.
Sets can store at most one copy of an item and have sublinear O(log(N)) search
time. They are excellent for membership look-ups and eliminating duplicates
(if you convert a list with duplicates to a set, the duplicates are gone):

myList = list(set(myList)) # Remove duplicates from myList

You can transform list data to a set for faster membership look-ups. For
example, let’s say bigList is a list of the first 10 million integer numbers repre-
sented as decimal strings:

bigList = [str(i) for i in range(10000000)]

"abc" in biglList # Takes 0.2 sec

bigSet = set(biglList)
"abc" in bigSet # Takes 15-30 usec—10000 times faster!

Dictionaries map keys to values. An object of any hashable data type (number,
Boolean, string, tuple) can be a key, and different keys in the same dictionary
can belong to different data types. There is no restriction on the data types
of dictionary values. Dictionaries have sublinear O(log(N)) search time. They
are excellent for key-value look-ups.

You can create a dictionary from a list of (key, value) tuples, and you can use
a built-in class constructor enumerate(seq) to create a dictionary where the key
is the sequence number of an item in seq:

Seq = ["alpha", “braVO“, "Charlie“, "delta"]
dict(enumerate(seq))

= {0: 'alpha', 1: 'bravo', 2: 'charlie', 3: 'delta'}

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

°12

Another smart way to create a dictionary from a sequence of keys (kseq) and
a sequence of values (vsec) is through a built-in class constructor, zip(kseq, vseq)
(the sequences must be of the same length):

kseq = "abcd" # A string is a sequence, too
vseq = ["alpha", "bravo", "charlie", "delta"]
dict(zip(kseq, vseq))

{'a': 'alpha', 'c': 'charlie', 'b': 'bravo', 'd': 'delta'}

Python implements enumerate(seq) and zip(kseq, vseq) (and the good old range(),
too) as list generators. List generators provide an iterator interface, which
makes it possible to use them in for loops. Unlike a real list, a list generator
produces the next element in a lazy way, only as needed. Generators facilitate
working with large lists and even permit “infinite” lists. You can explicitly
coerce a generator to a list by calling the list() function.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Comprehending Lists Through List Comprehension ¢ 13

Comprehending Lists Through List Comprehension

List comprehension is an expression that transforms a collection (not neces-
sarily a list) into a list. It is used to apply the same operation to all or some
list elements, such as converting all elements to uppercase or raising them
all to a power.

The transformation process looks like this:

1. The expression iterates over the collection and visits the items from the
collection.

2. An optional Boolean expression (default True) is evaluated for each item.

3. If the Boolean expression is True, the loop expression is evaluated for the
current item, and its value is appended to the result list.

4. If the Boolean expression is False, the item is ignored.
Here are some trivial list comprehensions:

Copy mylList; same as myList.copy() or mylList[:], but less efficient
[x for x in myList]

Extract non-negative items

[x for x in myList if x >= 0]

Build a list of squares

[x**2 for x in myList]

Build a list of valid reciprocals

[1/x for x in myList if x != 0]

Collect all non-empty lines from the open file infile,
with trailing and leading whitespaces removed
[L.strip() for 1 in infile if l.strip()]

In the latter example, the function strip() is evaluated twice for each list item.
If you don’t want the duplication, you can use nested list comprehensions.
The inner one strips off the whitespaces, and the outer one eliminates empty
strings:

[line for line in [l.strip() for 1 in infile] if line]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

° 14

If you enclose a list comprehension in parentheses rather than in square
brackets, it evaluates to a list generator object:

(x**2 for x in myList) # Evaluates to <generator object <genexpr> at 0x...>

Often the result of list comprehension is a list of repeating items: numbers,
words, word stems, and lemmas. You want to know which item is the most
or least common. Counter class, coming up next in Unit 7, Counting with

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

