
Extracted from:

Python Companion to Data Science
Collect → Organize → Explore → Predict → Value

This PDF file contains pages extracted from Python Companion to Data Science,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Python Companion to Data Science
Collect → Organize → Explore → Predict → Value

Dmitry Zinoviev

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-184-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my beautiful and most intelligent wife
Anna; to our children: graceful ballerina

Eugenia and romantic gamer Roman; and to
my first data science class of summer 2015.

CHAPTER 8

“I am plotting for myself, and counterplotting the designs of others,”
replied Tresham, mysteriously.

 ➤ William Harrison Ainsworth, English historical novelist

Plotting
Plotting data is an essential part of any exploratory or predictive data analysis
—and probably the most essential part of report writing. Frankly speaking,
nobody wants to read reports without pictures, even if the pictures are irrel-
evant, like this elegant sine wave:

There are three principal approaches to programmable plotting. We start an
incremental plot with a blank plot canvas and then add graphs, axes, labels,
legends, and so on, incrementally using specialized functions. Finally, we
show the plot image and optionally save it into a file. Examples of incremental
plotting tools include the R language function plot(), the Python module pyplot,
and the gnuplot command-line plotting program.

Monolithic plotting systems pass all necessary parameters, describing the
graphs, charts, axes, labels, legends, and so on, to the plotting function. We
plot, decorate, and save the final plot at once. An example of a monolithic
plotting tool is the R language function xyplot().

Finally, layered tools represent what to plot, how to plot, and any additional
features as virtual “layers”; we add more layers as needed to the “plot” object.
An example of a layered plotting tool is the R language function ggplot(). (For
the sake of aesthetic compatibility, the Python module matplotlib provides the
ggplot plotting style.)

In this chapter, you’ll take a look at how to do incremental plotting with pyplot.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Unit 41

Basic Plotting with PyPlot

Plotting for numpy and pandas is provided by the module matplotLib—namely, by
the sub-module pyplot.

Let’s start our experimentation with pyplot by invoking the spirit of the NIAAA
surveillance report you converted into a frame earlier on page ?, and proceed
to plotting alcohol consumption for different states and alcohol kinds over
time. Unfortunately, as is always the case with incremental plotting systems,
no single function does all of the plotting, so let’s have a look at a complete
example:

pyplot-images.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))
del alco["Total"]
columns, years = alco.unstack().columns.levels

The state abbreviations come straight from the file
states = pd.read_csv(

"states.csv",
names=("State", "Standard", "Postal", "Capital"))

states.set_index("State", inplace=True)

Alcohol consumption will be sorted by year 2009
frames = [pd.merge(alco[column].unstack(), states,

left_index=True, right_index=True).sort_values(2009)
for column in columns]

How many years are covered?
span = max(years) - min(years) + 1

The first code fragment simply imports all necessary modules and frames. It
then combines NIAAA data and the state abbreviations into one frame and
splits it into three separate frames by beverage type. The next code fragment
is in charge of plotting.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzpyds/code/pyplot-images.py
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

pyplot-images.py
Select a good-looking style
matplotlib.style.use("ggplot")

STEP = 5
Plot each frame in a subplot
for pos, (draw, style, column, frame) in enumerate(zip(

(plt.contourf, plt.contour, plt.imshow),❶
(plt.cm.autumn, plt.cm.cool, plt.cm.spring),
columns, frames)):

Select the subplot with 2 rows and 2 columns
plt.subplot(2, 2, pos + 1)❷

Plot the frame
draw(frame[frame.columns[:span]], cmap=style, aspect="auto")❸

Add embellishments
plt.colorbar()❹
plt.title(column)
plt.xlabel("Year")
plt.xticks(range(0, span, STEP), frame.columns[:span:STEP])
plt.yticks(range(0, frame.shape[0], STEP), frame.Postal[::STEP])
plt.xticks(rotation=-17)

The functions imshow(), contour(), and contourf() (at ❶) display the matrix as an
image, a contour plot, and a filled contour plot, respectively. Don’t use these
three functions (or any other plotting functions) in the same subplot, because
they superimpose new plots on the previously drawn plots—unless that’s
your intention, of course. The optional parameter cmap (at ❸) specifies a pre-
built palette (color map) for the plot.

You can pack several subplots of the same or different types into one master
plot (at ❷). The function subplot(n, m, number) partitions the master plot into n
virtual rows and m virtual columns and selects the subplot number. The subplots
are numbered from 1, column-wise and then row-wise. (The upper-left subplot
is 1, the next subplot to the right of it is 2, and so on.) All plotting commands
affect only the most recently selected subplot.

Note that the origin of the image plot is in the upper-left corner, and the Y
axis goes down (that’s how plotting is done in computer graphics), but the
origin of all other plots is in the lower-left corner, and the Y axis goes up
(that’s how plotting is done in mathematics). Also, by default, an image plot
and a contour plot of the same data have different aspect ratios, but you can
make them look similar by passing the aspect="auto" option.

• Click HERE to purchase this book now. discuss

Basic Plotting with PyPlot • 9

http://media.pragprog.com/titles/dzpyds/code/pyplot-images.py
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

The functions colorbar(), title(), xlabel(), ylabel(), grid(), xticks(), yticks(), and tick_params()
(at ❹) add the respective decorations to the plot. (We’ll revisit them in Unit
43, Mastering Embellishments, on page 12.) The function grid() actually toggles
the grid on and off, so whether you have a grid or not depends on whether
you had it in the first place, which, in turn, is controlled by the plotting style.

The function tight_layout() adjusts subplots and makes them look nice and tight.
Take a look at the following plots:

pyplot-images.py
plt.tight_layout()
plt.savefig("../images/pyplot-all.pdf")
#plt.show()

1977 1982 1987 1992 1997 2002 2007

Year

UT
MA
GA
NC
AZ
CO
OH
PA
TX
LA
NH

Beer

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

1977 1982 1987 1992 1997 2002 2007

Year

WV
OK
WY

IN
TX
NC
ME
FL

AK
CT
DC

Wine

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1977 1982 1987 1992 1997 2002 2007

Year

WV
OK
PA
NY
IL

AZ
MO
MD

RI
ND
NH

Spirits

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

The function savefig() saves the current plot in a file. The function takes either
a file name or an open file handle as the first parameter. If you pass the file
name, savefig() tries to guess the image format from the file extension. The
function supports many popular image file formats, but not GIF.

The function show() displays the plot on the screen. It also clears the canvas,
but if you simply want to clear the canvas, call clf().

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzpyds/code/pyplot-images.py
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Unit 42

Getting to Know Other Plot Types

In addition to contour and image plots, pyplot supports a variety of more con-
ventional plot types: bar plots, box plots, histograms, pie charts, line plots,
log and log-log plots, scatter plots, polar plots, step plots, and so on. The
online pyplot gallery1 offers many examples, and the following table lists many
of the pyplot plotting functions.

FunctionPlot type

bar()Vertical bar plot

barh()Horizontal bar plot

boxplot()Box plot with “whiskers”

errorbar()Errorbar plot

hist()Histogram (can be vertical or horizontal)

loglog()Log-log plot

semilogx()Log plot in X

semilogy()Log plot in Y

pie()Pie chart

plot()Line plot

plot_dates()Date plot

polar()Polar plot

scatter()Scatter plot (size and color of dots can be controlled)

step()Step plot

Table 5—Some pyplot Plot Types

1. matplotlib.org/gallery.html

• Click HERE to purchase this book now. discuss

Getting to Know Other Plot Types • 11

http://matplotlib.org/gallery.html
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

Unit 43

Mastering Embellishments

With pyplot, you can control a lot of aspects of plotting.

You can set and change axes scales ("linear" vs. "log"—logarithmic) with the
xscale(scale) and yscale(scale) functions, and you can set and change axes limits
with the xlim(xmin, xmax) and ylim(ymin, ymax) functions.

You can set and change font, graph, and background colors, and font and
point sizes and styles.

You can also add notes with annotate(), arrows with arrow(), and a legend block
with legend(). In general, refer to the pyplot documentation for the complete list
of embellishment functions and their arguments, but let’s at least add some
arrows, notes, and a legend to an already familiar NIAAA graph:

pyplot-legend.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))

Select the right data
BEVERAGE = "Beer"
years = alco.index.levels[1]
states = ("New Hampshire", "Colorado", "Utah")

Select a good-looking style
plt.xkcd()
matplotlib.style.use("ggplot")

Plot the charts
for state in states:

ydata = alco.ix[state][BEVERAGE]
plt.plot(years, ydata, "-o")
Add annotations with arrows
plt.annotate(s="Peak", xy=(ydata.argmax(), ydata.max()),

xytext=(ydata.argmax() + 0.5, ydata.max() + 0.1),
arrowprops={"facecolor": "black", "shrink": 0.2})

Add labels and legends
plt.ylabel(BEVERAGE + " consumption")
plt.title("And now in xkcd...")
plt.legend(states)

plt.savefig("../images/pyplot-legend-xkcd.pdf")

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzpyds/code/pyplot-legend.py
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

The triple-line plot shown here illustrates the dynamics of beer consumption
in three states (in fact, in the most, least, and median beer-drinking states):

1975 1980 1985 1990 1995 2000 2005 2010

1.0

1.5

2.0

B
e
e
r

co
n
su

m
p
ti

o
n

Peak

Peak

Peak

New Hampshire

Colorado

Utah

A Note on Unicode

If your plot contains Unicode (meaning non-Latin) characters, you
may need to change the default font before plotting any text by
adding a call to matplotlib.rc("font", family="Arial") as the first line of your
plotting script.

Finally, you can change the style of a pyplot plot to resemble the popular xkcd2

web comic with the function xkcd(). (The function affects only the plot elements
added after the call to it.) For some reason, we can’t save the plots as
PostScript files, but everything else works. Nonetheless, you probably should
avoid including xkcd-style plots in official presentations because they look
as if drawn by a drunk (see the plot on page 14)—unless, of course, the pre-
sentation itself is about alcohol consumption.

2. xkcd.com

• Click HERE to purchase this book now. discuss

Mastering Embellishments • 13

https://xkcd.com
http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

The module pyplot is great on its own. But it’s even better when combined with
pandas, which we’ll look at next.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpyds
http://forums.pragprog.com/forums/dzpyds

