
Extracted from:

Pythonic Programming
Tips for Becoming an Idiomatic Python Programmer

This PDF file contains pages extracted from Pythonic Programming, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Pythonic Programming
Tips for Becoming an Idiomatic Python Programmer

Dmitry Zinoviev

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-861-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

“Python comes with a great collection of data types and data structures”—you
will often see this phrase and its variations throughout this chapter. Choosing
the right representation for your data may be a matter of “life and death.” In
the best case, a wrongly chosen data type may cause significant performance
degradation. In the worst case, it may cause logical errors and lead to incorrect
results.

This chapter provides tips about both “traditional” and “obscure” data structures
and types, including standard containers, counters, and various numbers. You
will get advice on how to work with complex and rational numbers and infinities,
easily create modules, transform lists, count items, and appreciate the
immutability of tuples. The chapter also includes suggestions about advanced
class design (class attributes and customized object print-outs).

According to Niklaus Wirth, the inventor of Pascal and Modula and Turing
Award winner, Algorithms + Data Structures = Programs [Wir78]. This chapter
addresses all three aspects of the famous equation.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

Tip 33

Construct a One-Element Tuple

★2.7, 3.4+ Creating a one-element tuple is a pain. Let’s first use our common
sense and try to make a one-element tuple similar to one-element lists and
one-element sets:

type([0])

<class 'list'>➾

type({0})

<class 'set'>➾

type((0))

<class 'int'>➾

Bummer. The result is not a tuple but an integer number—the first and the
only element itself. That is because the parentheses in Python have several
uses: they participate in creating a tuple (in cooperation with commas), define
functions, define subclasses, invoke functions, and change the order of eval-
uation, to name a few. In the last example, the outer pair of the parentheses
invokes the function, and the inner pair...changes the order of evaluation!

To tell Python that a tuple is born, add a comma after the first element. It is
the comma that builds a tuple, not the parentheses.

type((0,))

<class 'tuple'>➾

a = 0, # Just a comma!
type(a)

<class 'tuple'>➾

Isn’t it exciting? So, perhaps, even the inner parentheses are redundant? Can
we eliminate them? Let’s calculate the length of a one-element tuple.

len(0,)

Traceback (most recent call last):➾

File "<stdin>", line 1, in <module>➾

TypeError: object of type 'int' has no len()➾

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

The error is that the comma also has several uses. It creates tuples, but it
also separates arguments in a function call and parameters in a function
definition. In this example, Python thought about the second use and treated
0 as the first argument. It is getting curiouser and curiouser. Perhaps, just
stay away from one-element tuples. You can replace a one-element container
that is not expandable with a single scalar variable.

Tip 34

Improve Readability with Raw Strings

★2.7, 3.4+ Raw strings are strings prefixed with the letters r or R outside of the
quotation marks. Within a raw string, the escape character, backslash '\',
does not have a special meaning. It is not an escape character anymore, it is
merely a backslash. Respectively, all special compound characters, such as
'\n' and '\v', lose their special meaning and become two-character strings:

print(r'\n' + '\n' + r'\n', len('\v'), len(r'\v'))

\n➾

\n 1 2➾

Consider a string that has many backslashes as such—for example, a regular
expression. In a “cooked” (not raw) string, each backslash must be prefixed
by another backslash, creating a forest of barely decipherable backslashes,
very much like this paragraph itself:

regex = '\\n\\\.\\\\n'
print(regex)

\n\\.\\n➾

(For your reference, this regular expression matches a string that consists of
a line break, followed by a literal backslash, followed by a period, followed by
another literal backslash, and by one more line break.) Raw strings make
this code more readable:

regex = r'\n\\.\\n'
print(regex)

\n\\.\\n➾

But what if you want to have a special escaped character in a raw string?
That is not directly possible. Either revert to the “cooked” strings or combine
a raw and a “cooked” string with string concatenation:

• Click HERE to purchase this book now. discuss

Improve Readability with Raw Strings • 7

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

mixed_string = '\n' + r'\\.' + '\n'
print(mixed_string)

➾
\\.➾

➾

Last but not least, for a bizarre reason, a backslash at the end of a raw string
still acts as an escape character. The string r'\' is not a single backslash, it is
an unterminated string.

r'\'

File "<stdin>", line 1➾

r'\'➾

^➾

SyntaxError: EOL while scanning string literal➾

Tip 35

Unpack Lists and Tuples

★★2.7, 3.4+ You can extract individual items from a sequence (such as tuple,
list, or string) using the indexing operator:

seq = 1, 2, 3, 4
x = seq[0]
y = seq[1]
z1 = seq[2]
z2 = seq[3]

Another way is to resort to multiple assignment (also known as a simultaneous
assignment). Naturally, the number of items on the left must match the
sequence size.

x, y, z1, z2 = seq

Multiple assignment works best if the number of items in the sequence is
known and does not change, because you have to list the variables on the
left-hand side of the assignment, and those variables must match the sequence
element-wise.

But wait, there is a catch. You can use the operator “star” (“*”) to collect the
remaining items from the sequence, even if you are not sure about the
sequence size. It suffices to know that the sequence has at least several

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

items—say, two. And there may be more of them, but maybe not. The fol-
lowing statement unpacks a sequence into the variables x (the first element),
y (the second element), and z (the rest of the elements as a list). The list is
empty if the sequence has only two items:

x, y, *z = seq
print(x, y, z, sep=' | '))

1 | 2 | [3, 4]➾

The starred variable on the left-hand side does not have to be the last. It can
be anywhere in the middle and even at the beginning of the statement. But
you cannot use more than one star; otherwise, matching is not possible:

*x, y, z = seq
print(x, y, z, sep=' | ')

[1, 2] | 3 | 4➾

*x, y, z = seq[:2] # Take the first two elements
print(x, y, z, sep=' | ')

[] | 1 | 2➾

And a little string example:

start, *rest, end = 'Hello, world'
print(start, ''.join(rest), end, sep=' | ')

H | ello, worl | d➾

Just what one would expect.

Tip 36

Print a List

★★2.7, 3.4+ If you tried to print a Python list in a human-readable way—without
all those square brackets, commas, and quotation marks—you know that
print(l) is not an ideal solution:

l = list('hello') + list(range(5))
print(l)

['h', 'e', 'l', 'l', 'o', 0, 1, 2, 3, 4]➾

• Click HERE to purchase this book now. discuss

Print a List • 9

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

What you need is a way to convert each list item to a string with str() and to
combine the strings with a delimiter of your choice (say, whitespace) and the
str.join() method. A list comprehension is an ideal tool for the job:

print(' '.join(str(x) for x in l))

h e l l o 0 1 2 3 4➾

The missing square brackets around what looks like a list comprehension
are not a mistake. Instead of list comprehension, I used a comprehension
expression to give you another exposure to this underappreciated mechanism
(Tip 20, Embrace Comprehensions, on page ?). If the lack of the brackets
scares you, put them back:

print(' '.join([str(x) for x in l]))

h e l l o 0 1 2 3 4➾

If the list is recursive (contains other compound items, such as lists, tuples,
and sets, or any combinations of them), you may combine printing with flat-
tening. Tip 37, Flatten That List, on page ? explains how.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

