
Extracted from:

Pythonic Programming
Tips for Becoming an Idiomatic Python Programmer

This PDF file contains pages extracted from Pythonic Programming, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Pythonic Programming
Tips for Becoming an Idiomatic Python Programmer

Dmitry Zinoviev

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-861-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

This chapter contains general tips—the tips that are related to general Python
programming. Following them does not make your programs faster or more
correct, and not following them does not make your programs slower or faulty.
These tips are about programming style and readability—that is, about being
Pythonic.

There is a belief among programmers that if a program is not beautiful, it is
also incorrect (for some unrelated reason). Pythonic programs are beautiful
and, therefore, less likely to be incorrect. Follow these tips; make your pro-
grams beautiful.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

Tip 14

Chain Comparison Operators

★2.7, 3.4+ Remember how you could write in an algebra class that x < y < z? In
Python, you can chain comparison operators, too: x < y < z. You can even write
x < y <= z != w, why not? An expression like this is evaluated first by evaluating
each comparison operator separately and then taking the and of the results:

x < y and y <= z and z != w

You could even evaluate bizarre expressions like x < y > z (check if y is greater
than both x and z)—but they are confusing and better avoided.

Tip 15

Expand the Tabs

★2.7, 3.4+ The character '\t' (tab space) is the only ASCII character whose visual
representation is context sensitive. One can trace the symbol to the Ice Age
of typewriters; the tabulator key would move the cartridge to the nearest tab
stop. Advanced typewriters allowed users to define tab stops anywhere along
the line, but the default (“cheap”) configuration was to keep them eight spaces
apart.

Modern terminals mostly follow the same rules. They display '\t' as a sequence
of one through seven characters, depending on how far the next tab stop
position is, which makes it hard to align the output, especially when the
distance between the tab positions is not known. Use method
str.expandtabs(tabsize=8) to simulate the printout before it is displayed. The method
expands each tab in the string by adding enough whitespace characters to
reach the nearest tab stop. You can control the distance between the stops
via the tabsize parameter:

'column1\tcol2\tc3'.expandtabs(8)

'column1 col2 c3'➾

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

You can use str.expandtabs() to calculate the width of a table or single string.
Sadly, the method simulates only “cheap” typewriters; you cannot customize
the individual stops.

Tip 16

Pickle It

★★2.7, 3.4+ In a not so uncommon situation, you may want to save the inter-
mediate results of your computations, either because another Python program
will use them or because it took you a couple of hours to compute and you
do not want to take any risks (see Tip 69, Checkpoint, It Saves Time, on page
?). There are many ways to accomplish this task. You can use CSV files for
two-dimensional tabular data (either directly in the core Python or via the
module csv). Unstructured data can be converted to JSON (module json) or
XML (module xml). Networks and other graphs gain from being stored in
GraphML, a specialized graph description format (module networkx). However,
some (if not most) Python complex objects are not easily converted into a
series of characters or bytes, or serialized. You will need another round of
jumping through hoops to convert that series back into complex objects
(deserialize).

Fortunately, Python supports pickling (and unpickling, something not quite
possible in real life). Pickling (or dumping) is a Python-specific serialization
mechanism that takes any Python object, no matter how complex, and saves
it to a file. Pickle files usually have the extension .p, .pkl, or .pickle. Unpickling
(loading) is about reading data from a pickle file and reconstructing the seri-
alized objects. You can save several objects into the same file sequentially or
create a list of objects that need saving, and pickle the whole list at once.
Here is an example of pickling in action:

with open('results.p', 'wb') as pickleFile:
pickle.dump(anyPythonObject, pickleFile)

Unpickling is equally simple:

with open('results.p', 'rb') as pickleFile:
aPythonObject = pickle.load(pickleFile)

Note that the pickle file must be opened in the binary mode, both for dumping
and loading.

• Click HERE to purchase this book now. discuss

Pickle It • 7

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

Tip 17

Avoid range() in Loops

★★2.7, 3.4+ The well-known built-in function range() that they very likely taught
you to use in a for loop is often unnecessary. It is a tribute to C/C++/Java,
the honorable predecessors of Python that actually need an index loop variable.
Python does not. Here is why.

The “classic” non-destructive for loop over an iterable seq looks like this:

for i in range(len(seq)):
do_something_with(seq[i])

The variable i is used only to access the next element from the iterable. Since
Python for loop is, in fact, a foreach loop, there is a better way to accomplish
this by iterating directly over the iterable (thus the name):

for item in seq:
do_something_with(item)

The direct iteration approach is faster (by about 30%), does not require creat-
ing the unnecessary indexes, and is more readable (“for [each] item in [that]
sequence, do something with [that] item”). But what if you really need to know
the index—say, to modify each item in a mutable iterable? For that, you have
the built-in function enumerate(). The function returns a generator (Tip 58,
Yield, Do Not Return, on page ?) that produces tuples of items and their
respective indexes in the form (i,seq[i]).

for i, item in enumerate(seq):
seq[i] = do_something_with(item)

Naturally, you can use the index for any other purpose—for example, to pro-
cess only odd-numbered items:

for i, item in enumerate(seq):
if i % 2:

do_something_with(item)

A C/C++/Java-trained programmer may argue that range() is required to
manipulate parallel iterables. Parallel iterables contain different attributes of
the i’th item at their i’th positions. Say, for example, lists x and y store the
namesake coordinates of two-dimensional points. How would one calculate
the distances from the points to the origin without knowing the indexes?

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

First and foremost, parallel lists do not belong in Python. As a matter of fact,
they do not belong in any programming language younger than the original
FORTRAN. You should use structs, classes, two-dimensional arrays, and other
data structures that group attributes. You may be excused if the attributes
originally come from different sources and require merging before further use.
The built-in function zip() comes to rescue:

for item1, item2 in zip(seq1, seq2):
do_something_with(item1, item2)

As a bonus, zip() can handle any number of parallel iterables. Tip 55, Pass
Arguments Your Way, on page ? explains how to pass them to the processing
functions at once:

for items in zip(seq1, seq2):
do_something_with(*items)

To bring this example to perfection, let’s assume that the parallel iterables
themselves are organized in a tuple seqs. In the spirit of the tip mentioned
above, pass the tuple to zip() as a whole and let Python unpack it:

for items in zip(*seqs):
do_something_with(*items)

The solution is concise, idiomatic, and independent of the number of parallel
iterables—as long as the function do_something_with() expects precisely that many
parameters.

Do we even need range() at all? Yes, we do, when we need a range of evenly
spaced integer numbers. For everything else, there are other tools.

Tip 18

Pass It

★2.7, 3.4+ Some compound statements in Python (for example, class, for, while,
if, and try) require that their body is not empty and contains at least one
statement. Even if you do not want to provide that statement, you must. In
C/C++/Java, one would use an empty statement—a block of two curly braces
{}. Python does not use curly braces (at least not for this purpose). Instead,
it uses indentation, and there is a problem with an empty statement defined
through indentation—it is invisible, like this:

• Click HERE to purchase this book now. discuss

Pass It • 9

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

class EmptyClass:
Is there an empty statement here? Can you see it?

Python provides an equivalent of an empty statement called pass. You use pass
when you must use a statement, but you do not care about it:

class EmptyClass:
pass

You could use a string literal instead, something like "Do nothing here"—but that
goes against The Zen of Python: “There should be one—and preferably only
one—obvious way to do it.”

Tip 19

Try It

★★2.7, 3.4+ There are two programming approaches to coding an operation that
may fail: an optimistic and a pessimistic one. The pessimistic approach
explained in Tip 85, Check, Then Touch, on page ? implies that failures are
frequent and costly to repair. It is cheaper to avoid them by checking some
precondition.

The optimistic approach, on the contrary, implies that failures are rare. It is
cheaper to try and then recover if anything goes wrong using the exception
handling mechanism (try/except). One of the most illustrative examples of an
optimistic scenario is checking whether a string represents a number.

Though not trivial, it is possible to describe a valid string representation of a
floating-point number with an exponential part using a regular expression.
However, it is much easier to pretend that a string represents such a number
and attempt to convert it. If the conversion is successful, the string is a
number. Otherwise, it is not (Tip 47, Discover an Infinity, on page ?):

def string_to_float(s):
try:

return float(s)
except ValueError:

return float('nan')

Another common application of the optimistic method is opening a file for
reading. You can open a file for reading if it exists, is indeed a file (not a
directory), it belongs to you, and is readable. You can replace this sequence

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

of checks with one painless attempt to open the file. If the file opens, it is
openable. Otherwise, it is not:

try:
with open('somefile') as infile:

Do something with infile
except (FileNotFoundError, IsADirectoryError, PermissionError):

Do something else

In case you anticipate some other file-related errors, add them to the tuple, but
try to avoid the “blanket” exception handlers (Tip 90, Isolate Exceptions, on
page ? explains why).

Whether to be an optimist and try, or be a pessimist and check, depends on
the complexity of the check, the penalty of trying, and your programming
philosophy. The former two can be estimated. The latter one is a matter of
how you were taught. I cannot help you with that.

• Click HERE to purchase this book now. discuss

Try It • 11

http://pragprog.com/titles/dzpythonic
http://forums.pragprog.com/forums/dzpythonic

