
Extracted from:

Resourceful Code Reuse
Write → Compile → Link → Run

This PDF file contains pages extracted from Resourceful Code Reuse, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Resourceful Code Reuse
Write → Compile → Link → Run

Dmitry Zinoviev

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Corina Lebegioara
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-820-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Arranging Source and Header Files (the C Way)
Proper code reuse can be challenging because it requires a specific mind-set.
A common mistake that even professional programmers make is putting all
their code in the same file like this:

jsontool.c
#include <stdio.h> // For input/outputLine 1

#include <stdlib.h> // For EXIT_SUCCESS or EXIT_FAILURE-

#include <stdbool.h> // For bool, false, and true-

-

typedef struct JSON_Object {5

// Lots of lines of code here-

// ...-

} JSON_Object;-

-

// Lots of helper functions, data types, and global variables10

int json_errno = 0;-

bool read_boolean(FILE* infile) { /* ... */; return false; }-

char *read_string(FILE* infile) { /* ... */; return NULL; }-

void *obscure_helper() { /* ... */ ; return NULL; }-

// ...15

-

// JSON parser and writer-

JSON_Object *read_json(char *fname) {-

JSON_Object *object = NULL;-

// Lots of lines of code here20

// ...-

return object;-

}-

-

int write_json(char *fname, JSON_Object *object) {25

int status = 0;-

// Lots of lines of code here-

// ...-

return status;-

}30

-

// Business logic-

static JSON_Object *do_stuff(JSON_Object *json) {-

// Lots of lines of code here-

// ...35

return json;-

}-

-

int main() {-

JSON_Object *json = read_json("their_file.json");40

if(!json) return EXIT_FAILURE;-

-

// Do some processing-

json = do_stuff(json);-

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzreuse/code/jsontool.c
http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

45

if(!write_json("my_json.json", json))-

return EXIT_FAILURE;-

-

puts("Success!");-

return EXIT_SUCCESS;50

}-

These programmers will then compile the program with their favorite C com-
piler, get an executable file, and run it:

/home/dzreuse/> cc jsontool.c -o jsontool
/home/dzreuse/> ./jsontool
Success!

Code reuse aside, this is an excellent C program! It’s (hopefully) correct,
concise, and easy to write, and it follows natural human logic. The program
defines a data structure, implements helper functions, uses them to implement
the parser and the writer, and uses the parser and the writer to solve the
problem.

Sadly, it has two issues: it’s inefficient from a C compiler’s point of view, and
it’s virtually not reusable.

A C compiler always translates one compilation unit at a time, typically the
whole C file with all header files (such as stdio.h) pasted into it verbatim. If you
change only one line or character in a C or header file, the whole unit must
be recompiled. As your program grows, compilation takes longer. If you want
to make your program compile faster, you must make compilation units
smaller. I’ll show you how to take advantage of this splitting in by using what
is known as separate compilation in Compiling Object Files, on page ?.

But let’s get to the point of reusability. Why is the code on page 1 not suitable
for reuse? Because it solves a specific problem: it parses a JSON file, trans-
forms it in a specific way, and writes it into another file. Since the code is an
indivisible compilation unit, no function from the file can be used in any
other project except by copying and pasting it into a text editor—but copying
and pasting code hurts its maintainability and consistency and blunts Occam’s
razor. And since the code already has the main() function, it cannot become a
part of any other project as a whole.

Here’s the bottom line: a monolithic program file written in the C language
is slow to compile and hard (frankly, impossible) to reuse. let’s break the
compilation unit into several smaller units and see if it helps.

A long and tedious list on page ? goes to great lengths to enumerate the
ways of decomposing components (functions, data types, and global variables)

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

into somewhat coherent collections. For now, if your file isn’t insanely large
yet, you can split it into a more reusable input/output part (JSON support)
and a non-reusable business logic part (JSON processing). Use your best
judgment to estimate each function’s propensity to be included in another
project in the future. Ask yourself: “How likely is it that I or someone else I
know or can think of will require the operation implemented in this function?”
If the answer is “more than likely,” that function belongs to the reusable part.
If the answer is “unlikely,” it belongs to the non-reusable part. It’s okay to
make a mistake! Splitting a compilation unit is a wicked problem: it doesn’t
have one correct answer.

Oh, and place all functions called from any potentially reusable function into
the same reusable part or provide a way to combine parts. A function won’t
work without its dependencies!

On a closer look, the non-reusable part probably consists of the main() function
and the function that implements the business logic of the jsontool. Let’s call
that part “business logic.” The helper functions, the parser, and the writer
are likely in the reusable part. You may further subdivide the reusable part
into two more parts.

A programmer may use the helper functions that read and write strings,
numbers, Boolean values, and the like in any project that requires reading
such elements—this is our “JSON tokens” part. And just as “J” in “JSON”
doesn’t mean JavaScript anymore, “JSON” in “JSON tokens” doesn’t refer
exclusively to JSON tokens but to any JSON-like tokens.

In contrast, the parser and the writer are JSON-specific. Their applicability
area is JSON processing; they’re useless in a non-JSON project and belong
to a “JSON syntax” part.

Let’s not forget that the “JSON syntax” part depends on the “JSON tokens”
part. The latter may exist on its own but not the other way around. If you
plan to reuse the “JSON syntax” components, you should reuse the “JSON
tokens” too.

You’ll have to apply the same classification procedure to the data types. Once
the components are nicely categorized, we’ll use a few technical tricks to
separate the compilation unit into three units by following these steps:

1. Physically move the content into three files.

2. Hide the global variables that aren’t global anymore.

3. Create a header file: an interface to the new source files.

• Click HERE to purchase this book now. discuss

Arranging Source and Header Files (the C Way) • 3

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

