
Extracted from:

Resourceful Code Reuse
Write → Compile → Link → Run

This PDF file contains pages extracted from Resourceful Code Reuse, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Resourceful Code Reuse
Write → Compile → Link → Run

Dmitry Zinoviev

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Corina Lebegioara
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-820-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction: Why Reuse Code?
Despite its name, modern computer science isn’t just a science—it’s also a
200-year-old arcane art, if we accept Charles Babbage as the first theoretical
computer scientist. It comes loaded with legends, anecdotes, apocrypha,
unwritten rules, and other words of wisdom. One example is the proudly
found elsewhere (PFE) or invented elsewhere (IE) predisposition: if the wheel
has been already invented, you shouldn’t design it again without a strong
reason but reuse the existing design. PFE/IE is a special case of the more
general philosophical Occam’s razor principle: entities shouldn’t be multiplied
without necessity.

As far as this book is concerned, both Occam’s razor and PFE/IE apply to a
simple concept: you should write a large code fragment only if you or someone
else hasn’t written that code fragment before. If the fragment has been written,
use it again—reuse it.

Several reasons exist for code reuse:

1. Code reuse puts into practice the advice of none other than William of
Occam (or Ockham, depending on whom you ask). If you and I were
philosophers, that alone would suffice.

2. Code reuse improves your productivity. Code fragments that you develop
to deal with frequently occurring tasks (for example, reading from and
writing to JSON files or supporting heterogeneous arrays and maps)
become parts of your programming portfolio. You can readily incorporate
them into your new projects, most likely bypassing the unit testing stage.
Third-party libraries (for example, libjson) are usually even more powerful
and more reliable. Ideally, you’d like to build your new program out of
existing pieces with as little new code of your own as possible.

3. Code reuse improves software quality. A reuseable code unit that has
been a part of another project must have been thoroughly debugged and
tested in the past. It never hurts to test it again, but at least you can
expect to have a good baseline.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

4. Code reuse improves software configurability. Runtime code reuse tech-
niques from Chapter 3, Reuse Code at Runtime (C and Python), on page
?, allow your program to postpone deciding what code to use until the
program runs. You can develop a skeletal program (a framework) with
slots for future code fragments to be filled as needed. In a sense, you get
a program that may configure itself or be configured by the user on the
fly.

You can reuse code in many ways and at many stages. This book will explain
how to reuse your source code (the program’s text written in a human-readable
programming language, such as C or Python) in Chapter 1, Reuse Code at
Compile Time (C and Python), on page ?. You’ll learn how to speed up pro-
gram build time and avoid disclosing the source code (if desirable) by creating
object files and libraries in Chapter 2, Reuse Code at Link Time (C Only), on
page ?. Finally, in Chapter 3, Reuse Code at Runtime (C and Python), on
page ?, you’ll learn how to physically separate the proper program code and
the reusable fragments and either bind them when the program runs (Har-
nessing Dynamic Loading, on page ?) or not bind them at all and instead
use a network communication protocol to request services and obtain results
(Getting a Taste of Remote Procedure Calls, on page ?). Incidentally, the
latter form of reuse makes your code available to both your own programs
and any other programs you authorize.

C vs. Python
You’ll see that C and Python software each require different code reuse tech-
niques.

C programs are usually compiled—they’re converted into files that contain
native CPU instructions with little or no “memory” of the original development
language. These converted files are relatively language-agnostic and can be
combined with other files developed in other compiled programming languages
(such as C++ or Rust). It makes sense then to organize them into libraries for
further reuse.

Python programs are usually interpreted by an interpreter or byte-compiled
—they’re converted into files that contain instructions for a virtual machine.
These converted files have more limited reusability, get along only with other
Python files, and often have to be byte-compiled again before reuse. This
limitation makes building complex shared Python libraries impractical.

Introduction: Why Reuse Code? • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

Running Example
Throughout the book, I’ll show you how to reuse code written mostly in the
C language and occasionally in Python. For that, we’re going to need a running
example. We’ll start with a program in C that isn’t necessarily unstructured,
cluttered, or hard to maintain, but it’s also not designed to be reused in the
future. We’ll slice, dice, and even tear this program apart and put it on differ-
ent computers to make the code more reusable.

Interestingly, you don’t even need to know anything about the problem that
the program solves to understand the reuse mechanisms. A differential
equation solver is as good as a web browser, which, in turn, is as good as a
program that controls a unicorn feeder. So, let’s pick a common problem that
has been automated time and again: a program that reads the content of a
JSON file into a C or Python data structure, modifies it somehow, and writes
the modified data structure to another JSON file.

A Note on JSON

The name “JavaScript Object Notation” (JSON) is misleading in almost every aspect.
For starters, JavaScript itself may have more in common with Java coffee than Java
language, but that’s not JSON’s fault. Second, JSON was designed to work with
JavaScript, but now it’s used as a programming language–agnostic data exchange
language and isn’t attached to JavaScript anymore. Third, JSON doesn’t describe
objects as we know them in OOP. JSON supports the following data types (with the
C and Python equivalents shown in parentheses):

• null (NULL, None)

• Booleans: true (1, True) and false (0, False)

• Numbers (same as in C and Python)

• Strings (char*, str). JSON strings must use single quotation marks. Example: 'JSON
or Jason?'

• Arrays (somewhat similar to arrays in C; lists in Python). JSON arrays are het-
erogeneous. They aren’t the same as C arrays. Example: [1, -3.14, "hello", null]

• Objects (don’t exist in C; dictionaries in Python). Example: {"name": "Dmitry", "smart":
true, "children": ["Roman", "Eugenia"]}

You’d have to implement heterogeneous linear arrays and key-value associative arrays
to support JSON arrays and objects in C. Not a big deal. let’s assume that all the
necessary arrays and their access functions have been already implemented elsewhere,
and we can readily reuse them—which makes this book unexpectedly recursive.

• Click HERE to purchase this book now. discuss

Running Example • vii

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

The program will rely on two functions: read_json(char *fname) and write_json(char
*fname, JSON_Object *object). Of course, it also has the main() function—but, as a
rule, the main() function is so specific to a program that you cannot reuse it.

The read_json(char *fname) function attempts to open the file named fname, read
valid JSON from the file, and construct and return a JSON object. Converting
a serial, often human-readable representation of an object into an actual
binary object is called deserialization. The write_json(char *fname, JSON_Object *object)
function attempts to create a new file named fname, convert a JSON object
into a string, and write the string into the file. Converting a complex binary
object into a serial, often human-readable representation is called serialization.

The internal organization of a JSON object isn’t our concern, and neither is
the internal organization of the functions. We only need to know that the
object definition and the functions exist and we plan to make them reusable.
Here is how the object and the functions could be declared in C:

jsontool.c
typedef struct JSON_Object {

// Lots of lines of code here
// ...

} JSON_Object;

// Lots of helper functions, data types, and global variables
int json_errno = 0;
bool read_boolean(FILE* infile) { /* ... */; return false; }
char *read_string(FILE* infile) { /* ... */; return NULL; }
void *obscure_helper() { /* ... */ ; return NULL; }
// ...

// JSON parser and writer
JSON_Object *read_json(char *fname) {

JSON_Object *object = NULL;
// Lots of lines of code here
// ...
return object;

}

int write_json(char *fname, JSON_Object *object) {
int status = 0;
// Lots of lines of code here
// ...
return status;

}

Here is how to declare the same object and functions in Python:

jsontool.py
def read_json(fname):

object = None

Introduction: Why Reuse Code? • viii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzreuse/code/jsontool.c
http://media.pragprog.com/titles/dzreuse/code/jsontool.py
http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

Lots of lines of code here - but fewer than in C!
...
return object

def write_json(fname, object):
status = 0
Fewer lines of code here - we love Python for its brevity!
...
return status

Note that these functions aren’t members of any Python class. Unlike C++
classes and C programs, Python and Java classes are monolithic. They cannot
be split into separate compilation units. Designing for code reuse in an object-
oriented language is a topic for another book.

There may be various helper functions and global variables in the example
program, such as read_string() for reading quoted strings, read_boolean() for reading
boolean values, read_array() for reading an array in square brackets, and even
the fictitious and suspiciously named obscure_helper() whose job is to optimize
the inner machinery of read_json(). The variable json_errno holds the code of the
most recent error in any JSON-related function (similar to the variable errno
from the standard C library file errno.h).

Finally, bear in mind that this book doesn’t explain how to parse, process,
or generate JSON. The book treats the functions previously mentioned as
“black boxes” that you could and would develop independently. This approach
allows you to concentrate on the reuse practices rather than on the domain-
specific details.

The stage is set. We’re ready to look at the first round of code reuse techniques,
and we’ll start with compile-time reuse.

• Click HERE to purchase this book now. discuss

Running Example • ix

http://pragprog.com/titles/dzreuse
http://forums.pragprog.com/forums/dzreuse

