
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

When it comes to massively parallel processing of multidimensional arrays—
vectors, matrices, datacubes, and so on—nothing seems to beat NumPy, a
numerical Python library (hence the name), and Matlab, the Matrix Laboratory
(hence the name). However, this wasn’t always the case. The first array pro-
cessing language, APL, was designed much earlier.

The original version of APL dates back to 1962 when Kenneth Iverson, a
Canadian computer scientist, introduced it as a form of algebraic and algo-
rithmic notation in his book A Programming Language [Ive62]. APL became a
powerful interactive problem-solving system, first optimized for legendary
IBM OS/360 mainframes (under the name APL\360) and, later, for minis and
personal computers. Unless you have a better alternative, you’ll work with
well-supported and well-documented GNU APL (apl).1 But first, we must have
a serious conversation about the APL character set and the need for a special-
ized keyboard.

Deciphering APL Character Set
If someone asks you what the only thing that differentiates APL from 99.9
percent of other programming languages is, answer without hesitation: it’s
APL’s character set.

The APL founding fathers were of a solid mathematical background. They
intended to create a programming language resembling familiar mathematical
notation as much as possible. Ideally, the user could type a formula in an
APL interpreter window and instantly execute it. That’s how APL ended up
with 65 special characters (in addition to the familiar alphanumerics, spaces,
and punctuation), including ⊖, ⍞, ⌹, a “thumbnail” (⍝), and even a grotesque
overlay of O, Q/U, and T (the end of input—see Performing Input and Output,
on page ?):

1. https://www.gnu.org/software/apl/

• Click HERE to purchase this book now. discuss

https://www.gnu.org/software/apl/
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

The extended alphabet of the language permitted users to write concise
expressions. For example, the following expression calculates the value of
e≈2.718281828 through Taylor series expansion with 170 members—
1++/1÷(!⍳170)—and I don’t blame you if you fail to recognize the formula at first
glance.

On the bright side, the value of π in APL is at your fingertips: ○1. The function
○ represents multiplication by π and understandably looks like a circle; though
it would be even more natural for such a function to look like a half-circle ◠
or represent multiplication by 2π.

Modern physical computer keyboards don’t show the extended APL characters.
As an APL coder, you must use a virtual keyboard, buy a pricey specialized
APL keyboard—from Dyalog,2 for example—or install a secondary APL keyboard
layout, not unlike a layout for a foreign language (see Activating the APL
Keyboard Layout, on page 5). Well, APL is a foreign language.

To conclude, the complete APL character set consists of the ASCII alphanu-
meric characters (A through Z, a through z, and 0 through 9), ASCII
punctuation, white spaces, and 65 or more special characters, making APL
the black sheep of programming languages, as the sidebar on page 6 explains.

Some special characters went out of use as early as 1970, making the APL
reader’s life somewhat more manageable.

2. https://www.dyalog.com/

• 4

• Click HERE to purchase this book now. discuss

https://www.dyalog.com/
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

I hope I haven’t scared you. You can study J or K instead—they’re remote
relatives of APL that use only standard ASCII characters—or continue with
APL anyway.

J and K

The J programming languagea is another baby of Kenneth Iverson. It appeared first
in 1990. J inherits the compactness and expressiveness of APL but does away with
any special characters. Sadly, along with losing the APL special characters, it also
lost APL’s charm.

The K programming languageb is from 1993 and out of Morgan Stanley. (To be fully
honest, K is a descendant of two more APL-style languages, A and A++.) K’s purpose
was to facilitate the migration of APL code from IBM mainframes to Sun workstations.
K uses heavy operator overloading to make up for the absence of silly special charac-
ters. It’s not clear to me if 10#{1+1.0%x}\1 in K is more readable than 1++/1÷(!⍳170)
in APL.

a. https://www.jsoftware.com/help/learning/contents.htm
b. https://xpqz.github.io/kbook/Introduction.html

Activating the APL Keyboard Layout
As a Linux or macOS user, you can switch to the secondary APL keyboard
layout with the program setxkbmap. The following command makes the combi-
nation Right-Alt a layout switch. Note the comma just in front of dyalog. No
space is between them (the invisible “empty” variant before the comma refers
to the us layout):

setxkbmap -layout us,apl -variant ,dyalog -option grp:switch

Press the combination to activate the secondary APL layout. Otherwise, the
standard U.S. layout is used. The same program with different options removes
the Right-Alt binding:

setxkbmap -layout us -option grp:switch

If you’re a Windows user or none of the above worked, visit the Dyalog website3

for more options.

This introduction to APL programming was longer than expected—blame the
APL character set. You’re ready to move on to the rest of the language, for it
deserves it.

3. https://www.dyalog.com/apl-font-keyboard.htm

• Click HERE to purchase this book now. discuss

Activating the APL Keyboard Layout • 5

https://www.jsoftware.com/help/learning/contents.htm
https://xpqz.github.io/kbook/Introduction.html
https://www.dyalog.com/apl-font-keyboard.htm
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

The Black Sheep of Programming Languages

Aside from APL, special (non-ASCII) characters can be found in PL/I (¬), Fortress (→,
⊂, ⊆, ∞), TI-BASIC (≤, ≠, ≥, √, →), Scala (←, ⇒), Haskell (∷, ∀, ⇒, ↣), Agda (ℕ, ∀), and
perhaps some other exotic languages. It’s APL, however, that makes wild and uncon-
strained use of the special symbols.

In APL’s defense, the first version of the American Standard Code for Information
Interchange (ASCII) wasn’t published until 1963, and before that, no standard char-
acter set existed. Any character, technically, was “special.”

IBM devised its staple encoding, Extended Binary Coded Decimal Interchange Code
(EBCDIC), only in 1963–64. At this point, we can only guess the original encoding of
the APL symbols. Fortunately, with the advent of Unicode, the Tower of Babel of the
character codes is once again uniting users and programmers instead of dividing them.

Looking at Data Types
Numbers can be integer and real, positive and negative, and here’s the catch:
APL strongly promotes the one-to-one correspondence between a symbol and
its function. In most programming languages, the minus is used as a con-
stituent of a negative literal expression (-5 is a negative 5) or a unary negation
function (-X is the negation of X, not necessarily a negative number by itself).
In APL, -X is the negation of X, but negative 5 is written as ¯5.

The original APL\360 doesn’t support complex numbers.

A one-dimensional numeric array—a vector—is a sequence of scalars
separated by one or more spaces. Notice that the APL code traditionally starts
in the seventh column. The first six positions are reserved for the output and
line numbers within function definitions (see Define and Call Functions, on
page ?; Fortran has a similar arrangement). Also, when in the interactive
mode, APL displays the value of the most recently entered expression:

1 2.0 3E¯4 ¯5e¯6
1 2 0.0003 ¯0.000005

Oddly, you cannot directly define a one-element array (it would be indistin-
guishable from a scalar), but you can specify a two-element array and
truncate it.

APL strings are enclosed in single quotation marks and cannot have line
breaks. If a quotation mark is an element of a string, it’s represented as two
consecutive quotation marks (compare Starset on page ?). A number
included in a vector of strings remains a number: string vectors don’t have

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

to be homogeneous. By the way, the symbol ⍝, a thumbnail, denotes a com-
ment throughout the line.

'I am a string' ⍝ 13 elements: 'I', ' ', 'a', 'm', ' ', ...
I am a string

'Me, ''too''' ⍝ 9 elements: 'M', 'e', ' ', '''', ...
Me, 'too'

'I' 'am' 'a' 'vector' 'of' 'strings' ⍝ 6 elements: 'I', 'am', ...
I am a vector of strings

'Me,' 2 ⍝ 2 elements: 'Me', 2
Me, 2

You can assign variable names to scalars, vectors, and higher-dimensional
arrays (the operation known in APL literature as specification and respeci-
fication). A variable name is any combination of letters, underlined letters
(obsolete), digits, an underscore, ∆, or ⍙ (also obsolete). However, it cannot
begin with a digit, S∆, or T∆ (the latter two are reserved for debugging). Vari-
able names are case-sensitive. The assignment function is the left arrow ←.

dataSize←32
dataSize

32
DATASIZE

VALUE ERROR
DATASIZE
^
Data←1 2 3
Data

1 2 3

All APL variables, unless declared local (see Creating User-Defined Functions,
on page ?), are global and available to all functions. Once “specified,” a
global variable becomes a part of a workspace—a container for variables,
functions, and other objects that the user creates and interacts with during
a session (user-defined functions are also stored in workspaces). Workspaces
are persistent: they can be saved and later restored. Variables and func-
tions can be listed and erased. Once erased from a workspace, a variable
becomes unavailable (compare operator del in Python):

)VARS
Data dataSize

)ERASE ata ⍝ Intentional mistake
NOT ERASED: ata

)ERASE Data
)VARS

dataSize
)CLEAR

CLEAR WS

• Click HERE to purchase this book now. discuss

Looking at Data Types • 7

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

Commands whose names begin with a right parenthesis (such as)CLEAR) are
system commands. Unlike variable names, they are case-insensitive, but we’ll
type them in uppercase to emphasize their significance.

Congratulations on your first APL experience! Have some rest, but remember
to log off:

)OFF
Goodbye.
Session duration: 59.4107 seconds

In the era of the mighty ancient mainframes and remote terminals, a failure
to log off might have resulted in a hefty bill!

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

