
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Whan that Aprill, with his shoures soote The droghte of March hath perced to
the roote And bathed every veyne in swich licour, Of which vertu engendred is
the flour.

 ➤ Geoffrey Chaucer, English poet, author, and civil servant

Introduction
The epigraph to this Introduction is taken from The Canterbury Tales, written
by Geoffrey Chaucer around 1387. At first glance, it’s written in English. At
a second glance, it’s not, for the number of misspelled words is enormous,
and the grammar looks weird too. Indeed, the Tales are composed in Middle
English, a language spoken and written in England in the fourteenth century
but that gradually transitioned into Modern English from the late fifteenth
century onward, joining the ranks of largely forgotten, and obscure for any
practical purpose, natural languages, such as Akkadian, Ancient Egyptian,
Old Norse, Latin, Aramaic, Manx, and Etruscan.

Natural languages originate (yes, even nowadays—Afrikaans in Dutch South
Africa, Modern Hebrew in Israel, Tok Pisin in Papua New Guinea), evolve, and
die. Programming languages are similar to them: they go through the same
cycle but at a much faster rate. This book is about forgotten, obscure program-
ming languages.

Why would one care about obscure languages? Well, for more than one reason!

• Learning from history. Studying older programming languages can provide
insight into why modern languages are designed the way they are and
why certain features exist.

• Different paradigms. Some obscure languages introduced programming
paradigms that are still relevant today, even if the languages are not
widely used anymore.

• Problem-solving skills. Programming languages are designed to solve par-
ticular problems efficiently. You can broaden your problem-solving skills
and get new perspectives on tackling problems.

• Improved code understanding. Studying different programming languages
improves your ability to understand code, making you more versatile.

• Employability. Knowledge in a obscure language can lead to unique and
well-paying job opportunities in niche markets.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

• Maintaining legacy systems. Much of today’s code was written in older
languages. Knowing these languages helps maintain and update these
systems.

The rest of the Introduction explains the choice of languages, outlines the
intended audience, and specifies the required software.

About the Languages
The Online Historical Encyclopaedia of Programming Languages lists approxi-
mately nine thousand languages arranged into two regnums (endogenous and
exogenous), four phyla (algorithmic, functional, structural, and reflexive), twelve
classes (conversational, imperative, spatially algorithmic, operation-oriented,
expression-oriented, state/flow, lambda calculus, structural generic, structural
specific, phenomenological, simulating, and close mapping), and forty orders
(too many to list).1 Regardless of whether we take this classification as ground
truth, the variety of coding paradigms is astonishing.

Most of the languages mentioned by hopl.info are dead languages. Some of them
were popular at creation but went out of favor later. Some were “stillborn”—
created but never having caught the momentum. The others lived a long,
respectable life and retired, superseded by more advanced tools.

The surviving languages could be grouped by their popularity among program-
mers. The position of a language on the TIOBE Index is an acceptable proxy
for popularity.2 The languages like Python, C, Java, and C++ are broadly used
in industry and academia and cover the full development stack: front end,
back end, and databases. They are loved and remembered—even Fortran,
the oldest coding language.

TIOBE individually rates the next thirty languages, including COBOL, Perl,
Objective-C, Ada, Lua, Lisp, Haskel, Kotlin, Scala, and Prolog. They’re not
forgotten either. However, TIOBE lumps the next fifty languages together:
their popularity is low and barely above the statistical margins of error
(ActionScript, BCPL, Erlang/Elixir, Forth, J, Occam, PL/I, Scheme, Smalltalk,
Tcl, and VHDL are in this group). And this is where things become intriguing.

A vast amount of literature exists on Erlang and Elixir (including Pragmatic’s
own Programming Erlang [Arm13] and Modern Erlang for Beginners [Ost18]).
Scheme is popular in higher education for teaching organization of program-
ming languages and similar topics. COBOL is a niche language: the entire

1. https://hopl.info
2. https://www.tiobe.com/tiobe-index

Introduction • iv

• Click HERE to purchase this book now. discuss

https://hopl.info
https://www.tiobe.com/tiobe-index
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

financial and insurance industries run on it, but outside coders couldn’t care
less. Haskel and Lua are confined to their niches too. Kotlin (2011) is relatively
new in the field; let’s give it a couple of years to shine in its full glory (or not).
Every language in this and the following groups has a story of success and
eventual failure—the story that almost nobody remembers. These are the
languages that I call “obscure.”

The format of this book allows me to tell you only seven obscure language
stories. Painful as it was, I had to choose those seven. I wanted the selection
to be diverse and include feature-rich, bizarre, and promising languages, even
if their promises would fail to be fulfilled.

As a result, I picked Forth, Occam, APL, Simula, SNOBOL, Starset, and m4.
They feature, among other things, pattern matching, computer simulation,
array and stack processing, macroprogramming, message passing, and set
programming. Only m4 needs an explanation. It’s not obscure because it was
once known—it’s “obscure” because it was never exposed to most software
developers. Heavily used today by various system configuration tools, it
deserves much more credit as a practical, Turing-complete language.

You can see the rise and fall of the “obscure” languages in the table below.
The introduction years are taken from Wikipedia. The peak and decline years
have been inferred from the Google Books Ngram Viewer, which is imperfect
yet gives some ballpark estimates of what was hot and what was not.

DeclinedPeakedIntroduced

199519811962–1966APL

19901972, 19821962–1967SNOBOL

200719851962–1967Simula

201319881968Forth

activen/a1977m4

199519891983Occam

n/an/a1991Starset

From this point on, I will not put the word obscure in quotation marks. I hope
we agree on its meaning: the obscure languages are not truly forgotten. They
are in the dark. Together, we can bring them back to daylight.

About the Tips
This book is peppered with tips highlighting critical conceptual connections
between the obscure languages and those currently in active use. Such subtle

• Click HERE to purchase this book now. discuss

About the Tips • v

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

connections are not only a tribute to the groundbreaking ideas from the glo-
rious past but the pulling ropes that could take the obscure languages out
of obscurity, and those connections could reveal the rainbows pointing to
pots of software development gold waiting to be rediscovered.

A Helpful Tip

The function foobar() in an obscure language loosely resembles the
function barfoo() in a popular existing language.

Think of these tips as a way to build and reinforce associations between
obscure languages and popular existing languages. The generative power of
a network of associations is in its density. The denser the network, the more
associations and creative ideas it generates in the reader, which is one of the
reasons for reading this book.

About You
This book is intended for software developers seeking new, unorthodox,
inspirational ideas to better their coding skills and theoretical understanding
of computer language organization. However, it’s also a crucial resource for
IT managers and team leads. Understanding the older languages enables
them to make informed decisions about legacy system maintenance, staff
training, and system integration. Additionally, tech enthusiasts and software
historians will find this book captivating, offering a deep dive into the evolu-
tionary layers of coding languages. Whether you’re hands-on with code or
overseeing teams and projects, this book provides invaluable insights into
obscure programming.

I hope that you, the reader, will see the connections between the concepts in
the past and their implementations today (for example, the first OOP language
was designed for computer simulation; digital humanities date back to the
early 1970s; indentation as a syntax feature is forty years old). Finally, you
will know how living in a world of specialized programming languages rather
than the general-purpose C, C++, Java, and Python could feel.

About the Software
In my youthful days, amid the stark realities of the former Soviet Union—
known today as Russia—my only way of learning a new programming language
was to imagine myself being that language interpreter and interpreting the
code written on paper. In the twenty-first century, you have better options.
Any programming language, with few exceptions, has been eventually brought

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

to life, one way or another—even Starset, the most obscure of the seven. The
question is not whether an interpreter or a compiler of a language exists but
where to find one. Being a devoted Linux user, I’ll advise you on how to get
a grip on Linux versions of the interpreters if they exist.

The luckiest of the obscure languages, m4, is not truly forgotten. Rather, it’s
obscured by more specialized tools that are unfamiliar to the users and even
programmers. I know a good programmer who believes that m4 is no more.
However, m4 is alive and kicking and at the heart of the GNU Autoconf system,
sendmail (a popular mail transfer agent), and Ratfor (a structured version of
Fortran 66). As such, it’s a part of any good Linux distribution; even if it’s
not, you’d have no trouble installing it.

For unknown reasons, but most likely not because of their exceptional prac-
tical significance, three more languages made it into the GNU ecosystem: APL,
Forth, and Simula. Their implementations became known as GNU APL, GNU
Forth (gforth), and GNU Simula (cim), and they are reasonably well maintained.

Phil Budne’s free CSNOBOL4 (snobol4), a port of Macro SNOBOL4, supports
full SNOBOL4 language plus SPITBOL and other extensions. You’ll have to
compile it yourself.

KRoC is the Kent Retargetable occam Compiler developed at the University
of Kent. It is open source but works only with 32-bit architectures. KRoC
implements Occam-pi—a modern flavor of Occam 2.5 with some elements of
π-calculus.

Finally, a Starset interpreter, christened “Suffolk Starset” or s3, is developed
and maintained by the team at my own Suffolk University. Its GitHub repos-
itory will be made public as soon as we release the first fully functional version.

The following list shows links to the obscure development tools’ repositories
at the time of writing this book.

• Forth. GNU Forth (gforth; for best results, install gforth-0.7.9; many examples
fail to compile with earlier versions)3

• Occam. Kent Retargetable occam Compiler (KRoC in Docker)4

• APL. GNU APL (apl),5 Dyalog APL/S (dyalog, proprietary, but free for non-
commercial use)6

3. https://www.gnu.org/software/gforth/
4. https://github.com/omegahm/kroc
5. https://www.gnu.org/software/apl/
6. https://www.dyalog.com/products.htm

• Click HERE to purchase this book now. discuss

About the Software • vii

https://www.gnu.org/software/gforth/
https://github.com/omegahm/kroc
https://www.gnu.org/software/apl/
https://www.dyalog.com/products.htm
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

• Simula. GNU Simula (cim)7

• SNOBOL. CSNOBOL4 (snobol4)8 for any operating system with a C89 com-
piler

• Starset. Suffolk Starset (s3)9

• m4. GNU m4 (m4)10

An obligatory note—while every effort has been made to ensure that a func-
tional compiler or interpreter of each obscure language exists for at least one
popular platform (macOS, Linux, or Windows), this idyllic situation is hard
to preserve due to the very definition of “being forgotten.” If you want to enjoy
this book thoroughly, get the software previously mentioned while you can!

Writing Something Big
Forgotten or not, any programming language claiming a right to exist must
be good at least for something beyond printing “Hello, world!” The second-to-
last section of each chapter is called “Writing Something Big.” It presents a
moderately sized (a page or two), relatively practical, and self-contained
example of the chapter’s language use. If the example feels offensively
incomprehensible, you can safely skip it and proceed to the next chapter.

Further Reading
Each chapter concludes with a section titled “Further Reading” (just like this
one). That section contains a curated list of further suggested reading on the
subject.

One cannot expect to achieve a complete mastery of seven such diverse
languages in seven weeks, and not only are they diverse, but each is a mind-
breaker. Fortunately, many reference books and textbooks on most of these
languages have been published during their peak popularity. To save you the
effort of searching for these materials, I’ve compiled a comprehensive list of
books for each chapter. Please note, some of these resources may be hard to
find, some only exist in scanned format, and a few are only available in Rus-
sian due to the absence of English translations.

However, if a particular language captivates you, say, like Starset on page
?, you will hopefully appreciate my cataloging effort made to support your

7. https://www.gnu.org/software/cim/
8. https://www.regressive.org/snobol4/csnobol4/curr/
9. https://github.com/dzinoviev/starset
10. https://www.gnu.org/software/m4/

Introduction • viii

• Click HERE to purchase this book now. discuss

https://www.gnu.org/software/cim/
https://www.regressive.org/snobol4/csnobol4/curr/
https://github.com/dzinoviev/starset
https://www.gnu.org/software/m4/
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

learning journey. The books are listed chronologically to illuminate the flows
and ebbs of the language popularity.

Online Resources
This book has a dedicated web page,11 where you can access all the accompa-
nying code. On the site, you’ll also find a community forum where you can
ask questions, share comments, and submit errata (registration on DevTalk
is required).12 If you’ve purchased the ebook, clicking the gray box above the
code extracts will allow you to download them directly.

What to Do Next?
Choose the first obscure language to explore. Download and install its inter-
preter or compiler, or grab a pencil and sheet of paper. Start reading and
coding in awe.

11. https://pragprog.com/book/dzseven
12. https://devtalk.com/books/seven-obscure-languages-in-seven-weeks/

• Click HERE to purchase this book now. discuss

Online Resources • ix

https://pragprog.com/book/dzseven
https://devtalk.com/books/seven-obscure-languages-in-seven-weeks/
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

