
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Greeting in Occam and KRoC
In this chapter, you’ll primarily use KRoC—the Kent Retargetable occam
Compiler (note the official spelling!) from the University of Kent. The KRoC
implements Occam-π, a modern version of Occam 2.5 infused with some
elements of π-calculus.

π-calculus

π-calculus is a theoretical model for concurrent computing, developed by Robin Milner
in 1992 as an extension of his work on the calculus of communicating systems (CCS).
π-calculus provides a framework for understanding and analyzing the behaviors of
concurrent systems, where multiple processes operate simultaneously and interact.
A key feature of π-calculus is its ability to describe dynamic topology, meaning that
the connections between processes can change over time. This flexibility is achieved
through the concept of “channel mobility,” where the names of communication channels
can be passed between processes, allowing for flexible and evolving communication
structures. π-calculus is highly abstract and mathematical, but it has significantly
influenced computer science and theoretical informatics, particularly in designing
and analyzing distributed systems, communication protocols, and mobile computing.

A significant difference exists between the highly optimized, industrial-grade
KRoC and the “classical” Occam of David May and Tony Hoare. Out of respect
for its originators, this chapter will guide you through classical Occam, providing
specific notes to address the disparities between the two dialects as necessary.

So here’s the standard greeting in Occam, illustrated in two ways. (This code
doesn’t run with KRoC.) One immediate observation is that comments begin
with two dashes and continue until the end of the line.

occam/hello-classical.occ
-- Display "Hello, world!"
CHAN([BYTE]BYTE) output:
output ! "Hello,*sworld!*n"

The peculiar markers *s and *n denote a space and a line break, respectively.
You can substitute *s with a literal space, but *n cannot be replaced with the
familiar \n.

Next, KRoC employs a preprocessor akin to CPP, the C/C++ preprocessor,
except the directives are composed in uppercase letters. The directive #INCLUDE
"course.module" includes the file course.module verbatim. The file contains the KRoC
standard library, a feature absent in classical Occam.

occam/hello.occ
-- Display "Hello, world!"

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzseven/code/occam/hello-classical.occ
http://media.pragprog.com/titles/dzseven/code/occam/hello.occ
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

#INCLUDE "course.module"
PROC hello (CHAN BYTE out!)

out.string ("Hello, world!*n", 0, out!)
:

Lastly, be mindful of the colon at the end of the second example. Usually
placed on a separate line, it signifies the end of a definition (in this case, the
end of the procedure).

You’ll learn about other features used in these examples in the subsequent
sections.

Studying Variables and Data Types
In the spirit of Occam’s razor and in the spirit of being essentially a glorified
assembly language, Occam offers a limited set of numerical data types. Three
primary types are mandatory, with some allowing further specifications:

• INT. Required, equal in size to the computer’s machine word; INT16, INT32,
INT64 are optional extensions.

• BYTE. Required, comprising eight bits; also represents characters.

• BOOL. Required, can be TRUE or FALSE.

• REAL32, REAL64. Both are optional extensions.

Simple Data Types

Occam’s palette of simple data types, especially the absence of
required floating point data types, resembles one of Forth,
explained on page ?. It almost feels like all assembly-like lan-
guages are the same, no matter how disguised.

Other simple data types denote Occam-specific objects, such as timers and
channels. If you need an equivalent of a C structure of a C++ class, use dec-
larations RECORD in combination with DATA TYPE. In the example that follows
(highlighted), the former defines a new data structure with two REAL32 fields,
x and y. The latter incorporates the data structure into Occam’s type system.
Consequently, you can generate variables of this data type and access their
fields through square bracket notation.

occam/testrecord.occ
PROC test.record ()

DATA TYPE xy.point➤

RECORD➤

REAL32 x :➤

REAL32 y :➤

:➤

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzseven/code/occam/testrecord.occ
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

-- In "classical" Occam:
-- RECORD xy.point IS (REAL32, REAL32):
-- Declare a 2D point
xy.point center :

SEQ
-- Initialize the point coordinates
center := [2.0 (REAL32), 3.0 (REAL32)]
-- Translate the point by 1,-1
center[x] := center[x] + 1.0
center[y] := center[y] - 1.0

:

Records

Occam RECORDs loosely correspond to the C language structs or to
the attributes (but not methods) of the C++ language class. The
declaration DATA TYPE loosely corresponds to the C language operator
typedef.

Occam doesn’t support implicit type conversion. You must explicitly convert
a value to a matching type using either of two methods: by prefacing the new
type name before the value (without parentheses, known as pre-casting) or
after the value (in parentheses, referred to as post-casting).

INT big.dog: -- An integer variable
BYTE am.potat: -- A byte-sized variable
SEQ -- Disregard!

big.dog := (INT TRUE) + '0' (INT)
am.potat := BYTE big.dog

Take note of a few things: a variable declaration ends with a colon; a block
of code (SEQ, Sequential Processes, on page ?) is indented by two spaces;
pre-casting can be used with constants and variables, whereas post-casting
only applies to constants; if an operand of an arithmetic expression is a pre-
cast, it must be parenthesized.

From the previous code example, you’ve been subtly introduced to identifiers.
Occam identifiers are case-sensitive. They must begin with a letter and can
include only letters, digits, and periods. All variables used in a process need
to be declared in the specification section; their scope remains local to the
specified process and all processes depending on it.

Processes cannot share variables, as two processes may be executed by sep-
arate transputers with no shared memory! The sole method to interchange
values between processes is via channels.

• Click HERE to purchase this book now. discuss

Studying Variables and Data Types • 5

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

A declaration doesn’t initialize the variable. Hence, you must initialize each
variable prior to its first usage.

In addition to variables, Occam also supports constants. The combination of
keywords VAL (or CONST in some dialects) and IS defines a constant. If the con-
stant’s data type can be inferred, you don’t have to declare it. In classical
Occam, several variables of the same data type can be declared on the same
line, separated by commas.

VAL INT year IS 365:
VAL leap.year IS year + 1:
VAL ESC IS 27 (BYTE):

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

