
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

This chapter offers you a gift. Instead of one obscure language, it gives you
two: Simula and ALGOL, because Simula is ALGOL in disguise (specifically,
Simula-67 is a superset of ALGOL-60). Beyond OOP, Simula’s origins in
simulation will introduce you to coroutines and discrete event modeling,
enabling you to simulate complex systems—a skill increasingly crucial in
data-driven decision-making.

But do not get too excited yet: ALGOL had a massive influence on computing
in general and specifically on programming languages, but, forgotten for any
practical purpose, it is remarkably boring.

ALGOL is the second oldest programming language, designed in 1958 as a
direct successor to FORTRAN. Its antiquated features are a clear reminder
of its roots in the early days of computing. ALGOL is characterized by its
heavy syntax, reliance on GOTO statements, a clear divide between functions
and procedures, lack of dynamic memory allocation, and compatibility with
punch cards rather than files.

Such shortcomings, among others, must have prompted the emergence of
Simula between 1962 and 1967. Simula stepped in to supplant ALGOL,
absorbing its core components while enhancing its capabilities. Developed
initially for CD 3300, it was soon ported to CD 3600, CD 6600, UNIVAC 1108,
IBM 360/370, and other computer systems.

It’s ALGOL!
Boring or not, ALGOL is Simula, and you cannot learn one without learning
the other. Let’s start with the traditional “Hello, world!” chant to illustrate
using comments and compound statements.

simula/hello.sim
% A comment
! Another comment ;
BEGIN

OutText("Hello World!");
COMMENT One more comment ; Outimage;

END of Program

An unterminated comment begins with % and extends to the end of the line.
Terminated comments begin with ! or COMMENT and extend to the first semicolon
because both are statements, and statements must always conclude with a
semicolon. Everything after the END clause to the end of the line is ignored,
too.

A compound statement is a sequence of single or other compound statements
wrapped in BEGIN and END clauses. It can be utilized in any situation where a

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzseven/code/simula/hello.sim
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

single statement would be expected. A Simula program is typically one com-
pound statement.

Compound Statements

Simula compound statements correspond to the C/C++/Java
compound statements enclosed in curly braces {} or Python blocks
indented by the same amount.

ALGOL-60 and Simula are case-insensitive languages. As a convention, con-
sider typing keywords in uppercase letters and identifiers in mixed-case letters
for better readability and consistency.

Glancing at Variables, Data Types, and Operators
A variable must be declared at the beginning of the statement in which it is
used before any executable statement (such executable statements are called
“sentences”). A declaration (or a “qualification,” as it is known in the original
Simula documentation) includes the name and the data type.

The set of primitive data types in Simula is almost “standard” for its time. It
has INTEGER numbers (26, -12), REAL numbers (3.14159, 2E-8), BOOLEAN constants
(TRUE and FALSE), and EBCDIC CHARACTER ('*'). Explicit type conversion is not
supported.

Operators in Simula generally behave as you would expect. Many operators
come in two forms: “classical” ALGOL-60 (with non-EBCDIC characters) and
“modern” (only with EBCDIC/ASCII characters). The arithmetic operations
include addition (+), subtraction (-), multiplication (× or *), division (/), integer
division (÷ or //), and exponentiation (↑ or **).

Logical operators encompass the following: greater than (>), less than (<), less
than or equal to (≤ or <=), greater than or equal to (≥ or >=), inequality (≠, ¬=,
or <>; compares values), reference inequality (=/=; compares references),
equality (=; compares values), and reference equality (==; compares references).

The language also includes the following relational operators: negation (¬ or
NOT), conjunction (∧ or AND), disjunction (∨ or OR), implication (⊃ or IMP, this is
interpreted as “B follows from A” or “NOT A OR B”), and equivalence (≡ or EQV,
which is the same as NXOR).

Comparison

Operators = and <> correspond to Python language operators ==
and !=. Operators == and =/= correspond to Python language
operators is and is not.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

Characters
Simula characters are enclosed in single quotes. A few procedures are provided
to convert them to and from integer character codes and to test their associ-
ations with character classes.

• rank(c): Returns the integer character code (cf. ord(c) in Python).

• char(n): Returns the character that corresponds to the code n (cf. chr(n) in
Python).

• digit(c): Returns TRUE if c is a decimal digit.

• letter(c): Returns TRUE if c is a letter (according to the local definition of let-
ters).

Text Objects and Operations
Simula offers two additional data types specific to its structure: REF and TEXT.
The REF type is a reference to an object, denoted as NONE if no object is refer-
enced. The TEXT type is used for text strings—for example, "Hello, world!". When
not initialized, its value is NOTEXT.

A Simula reference is an alternate identifier for an existing object. An instance
of the TEXT type is a reference to a compound object—a text descriptor.

Unlike the languages we remember, Simula treats text not as a character
array but as a memory file. The text descriptor contains information about
the text area (text buffer), including its memory address, size, and current
position within the text (it starts at 1). Typically, this position points to the
first uninitialized character, but you can reposition it as desired. If T is a text,
then Integer T.Pos returns its current position, T.SetPos(n) sets the current position
to n, Integer T.Length returns the text area size, and Boolean T.More checks if the
position is at the end of the text area.

In Simula, there are two methods to create a text object:

• By allocating a blank space-initialized text area of size n with the procedure
Blanks(n) and then initializing by assigning a literal string, or

• By copying a literal string s with the procedure Copy(s).

Note that Simula has two assignment operators: “:=” is used for value
assignment, and “:-” is used for reference assignment.

TEXT t1, t2;
t1 :- Blanks(10); ! Reference assignment ;
t1 := "Hello,"; ! Value assignment ;

• Click HERE to purchase this book now. discuss

Glancing at Variables, Data Types, and Operators • 5

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

t2 :- Copy("World!"); ! Reference assignment ;

Several procedures can be utilized to manipulate texts in Simula, including:

• T.GetChar: Returns the current character and advances the current position.

• T.PutChar(c): Inserts the character c at the current position and advances
the current position.

• T.Sub(p,n): Creates a subtext of length n, starting at the position p.

• T.Strip: Eliminates white spaces (blanks) at the end of text area.

• T.GetInt: Interprets the text as an integer number.

• T.GetReal: Interprets the text as a real number.

• T.PutInt(n): Appends an integer number n.

• T.PutFix(n,w): Appends an integer number n of a fixed width w.

• T.PutReal(n,w): Appends a real number n of a fixed width w.

As an example, the following code fragment greets the author. It allocates a
64-character text area, copies the greeting, appends the author’s initials,
removes unused characters, and displays the results.

simula/greet.sim
BEGIN

TEXT txt;
txt :- Blanks(64);
txt := "Hello, ";
txt.SetPos(8); ! Skip over the greeting! ;
txt.PutChar('D');
txt.PutChar('Z');
txt :- txt.Strip; ! Remove the trailing blanks ;
OutText(txt);
OutText("!");

END;

If cim is installed on your system, you can compile and run the program as
follows:

/home/dzseven> cim greet.sim
Compiling greet.sim:
gcc -g -O2 -c greet.c
gcc -g -O2 -o greet greet.o -L/usr/local/lib -lcim
/home/dzseven> greet
Hello, DZ!

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dzseven/code/simula/greet.sim
http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

Arrays
Simula arrays are static and optionally multidimensional. The type, size,
index ranges, and number of dimensions of an array must be declared at the
time of programming. Indices can start from any value, not limited to 0 or 1.
Array elements can be accessed and modified using parentheses notation.

INTEGER ARRAY age, weight(0:16); ! A vector of length 17 ;
CHARACTER ARRAY chess(1:8,1:8); ! A 2D array 8×8 ;
age(0) := 16;
chess(1,1) := 'Q';

Simula performs a runtime index check and will terminate your program if
an index is out of bounds.

Arrays

Simula arrays are comparable to Fortran arrays and statically
declared C arrays.

• Click HERE to purchase this book now. discuss

Glancing at Variables, Data Types, and Operators • 7

http://pragprog.com/titles/dzseven
http://forums.pragprog.com/forums/dzseven

