
Extracted from:

Hello, Android
Introducing Google’s

Mobile Development Platform

This PDF file contains pages extracted from Hello, Android, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Portions of the book’s cover are reproduced from work created and shared by Google and

used according to terms described in the Creative Commons 2.5 Attribution License. See

http://code.google.com/policies.html#restrictions for details.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Ed Burnette.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-17-4

ISBN-13: 978-1-934356-17-3

Printed on acid-free paper.

P1.3 printing, June 22, 2009

Version: 2009-6-23

http://code.google.com/policies.html#restrictions
http://www.pragprog.com

ADDING GRAPHICS TO SUDOKU 80

Figure 4.2: Using a gradient background defined in XML

4.2 Adding Graphics to Sudoku

It’s time to apply what we’ve learned to our Sudoku example. When we

left it at the end of Chapter 3, the Sudoku game had an opening screen,

an About dialog box, and a way to start a new game. But it was missing

one very important part: the game! We’ll use the native 2D graphics

library to implement that part.

Starting the Game

First we need to fill in the code that starts the game. startGame() takes

one parameter, the index of the difficulty name selected from the list.Here’s

the new definition:

Download Sudokuv2/src/org/example/sudoku/Sudoku.java

/** Start a new game with the given difficulty level */

private void startGame(int i) {

Log.d(TAG, "clicked on " + i);

Intent intent = new Intent(Sudoku.this, Game.class);

intent.putExtra(Game.KEY_DIFFICULTY, i);

startActivity(intent);

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Sudoku.java
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 81

Sudoku Trivia

A few years after it was published in the United States, Num-
ber Place was picked up by the Japanese publisher Nikoli, who
gave it the much cooler-sounding name Sudoku (which means
“single number” in Japanese). From there it was exported
around the world, and the rest is history. Sadly, Garns died in
1989 before getting a chance to see his creation become a
worldwide sensation.

}

The game part of Sudoku will be another activity called Game, so we

create a new intent to kick it off. We place the difficulty number in an

extraData area provided in the intent, and then we call the startActivity()

method to launch the new activity.

The extraData area is a map of key/value pairs that will be passed along

to the intent. The keys are strings, and the values can be any primitive

type, array of primitives, Bundle, or a subclass of Serializable or Parce-

lable.

Defining the Game Class

Here’s the outline of the Game activity:

Download Sudokuv2/src/org/example/sudoku/Game.java

package org.example.sudoku;

import android.app.Activity;

import android.app.Dialog;

import android.os.Bundle;

import android.util.Log;

import android.view.Gravity;

import android.widget.Toast;

public class Game extends Activity {

private static final String TAG = "Sudoku";

public static final String KEY_DIFFICULTY =

"org.example.sudoku.difficulty";

public static final int DIFFICULTY_EASY = 0;

public static final int DIFFICULTY_MEDIUM = 1;

public static final int DIFFICULTY_HARD = 2;

private int puzzle[] = new int[9 * 9];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 82

private PuzzleView puzzleView;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Log.d(TAG, "onCreate");

int diff = getIntent().getIntExtra(KEY_DIFFICULTY,

DIFFICULTY_EASY);

puzzle = getPuzzle(diff);

calculateUsedTiles();

puzzleView = new PuzzleView(this);

setContentView(puzzleView);

puzzleView.requestFocus();

}

// ...

}

The onCreate() method fetches the difficulty number from the intent

and selects a puzzle to play. Then it creates an instance of the PuzzleView

class, setting the PuzzleView as the new contents of the view. Since this

is a fully customized view, it was easier to do this in code than in XML.

The calculateUsedTiles() method, which is defined in Section 4.4, The

Rest of the Story, on page 95, uses the rules of Sudoku to figure out, for

each tile in the nine-by-nine grid, which numbers are not valid for the

tile because they appear elsewhere in the horizontal or vertical direction

or in the three-by-three subgrid.

This is an activity, so we need to register it in AndroidManifest.xml:

Download Sudokuv2/AndroidManifest.xml

<activity android:name=".Game"

android:label="@string/game_title"/>

We also need to add a few more string resources to res/values/strings.xml:

Download Sudokuv2/res/values/strings.xml

<string name="game_title">Game</string>

<string name="no_moves_label">No moves</string>

<string name="keypad_title">Keypad</string>

Defining the PuzzleView Class

Next we need to define the PuzzleView class. Instead of using an XML

layout, this time let’s do it entirely in Java.

Here’s the outline:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Sudokuv2/res/values/strings.xml
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 83

What Size Is It Anyway?

A common mistake made by new Android developers is to use
the width and height of a view inside its constructor. When
a view’s constructor is called, Android doesn’t know yet how
big the view will be, so the sizes are set to zero. The real sizes
are calculated during the layout stage, which occurs after
construction but before anything is drawn. You can use the
onSizeChanged() method to be notified of the values when they
are known, or you can use the getWidth() and getHeight() meth-
ods later, such as in the onDraw() method.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

package org.example.sudoku;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Rect;

import android.graphics.Paint.FontMetrics;

import android.graphics.Paint.Style;

import android.util.Log;

import android.view.KeyEvent;

import android.view.MotionEvent;

import android.view.View;

import android.view.animation.AnimationUtils;

public class PuzzleView extends View {

private static final String TAG = "Sudoku";

private final Game game;

public PuzzleView(Context context) {

super(context);

this.game = (Game) context;

setFocusable(true);

setFocusableInTouchMode(true);

}

// ...

}

In the constructor we keep a reference to the Game class and set the

option to allow user input in the view. Inside PuzzleView, we need to

implement the onSizeChanged() method. This is called after the view is

created and Android knows how big everything is.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 84

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

private float width; // width of one tile

private float height; // height of one tile

private int selX; // X index of selection

private int selY; // Y index of selection

private final Rect selRect = new Rect();

@Override

protected void onSizeChanged(int w, int h, int oldw, int oldh) {

width = w / 9f;

height = h / 9f;

getRect(selX, selY, selRect);

Log.d(TAG, "onSizeChanged: width " + width + ", height "

+ height);

super.onSizeChanged(w, h, oldw, oldh);

}

private void getRect(int x, int y, Rect rect) {

rect.set((int) (x * width), (int) (y * height), (int) (x

* width + width), (int) (y * height + height));

}

We use onSizeChanged() to calculate the size of each tile on the screen

(1/9th of the total view width and height). Note this is a floating-point

number, so it’s possible that we could end up with a fractional num-

ber of pixels. selRect is a rectangle we’ll use later to keep track of the

selection cursor.

At this point we’ve created a view for the puzzle, and we know how big

it is. The next step is to draw the grid lines that separate the tiles on

the board.

Drawing the Board

Android calls a view’s onDraw() method every time any part of the view

needs to be updated. To simplify things, onDraw() pretends that you’re

re-creating the entire screen from scratch. In reality, you may be draw-

ing only a small portion of the view as defined by the canvas’s clip

rectangle. Android takes care of doing the clipping for you.

Start by defining a few new colors to play with in res/values/colors.xml:

Download Sudokuv2/res/values/colors.xml

<color name="puzzle_background">#ffe6f0ff</color>

<color name="puzzle_hilite">#ffffffff</color>

<color name="puzzle_light">#64c6d4ef</color>

<color name="puzzle_dark">#6456648f</color>

<color name="puzzle_foreground">#ff000000</color>

<color name="puzzle_hint_0">#64ff0000</color>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/res/values/colors.xml
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 85

Other Ways to Do It

When I was writing this example, I tried several different
approaches such as using a button for each tile or declaring a
grid of ImageView classes in XML. After many false starts, I found
that the approach of having one view for the entire puzzle and
drawing lines and numbers inside that proved to be the fastest
and easiest way for this application.

It does have its drawbacks, though, such as the need to draw
the selection and explicitly handle keyboard and touch events.
When designing your own program, I recommend trying stan-
dard widgets and views first and then falling back to custom
drawing only if that doesn’t work for you.

<color name="puzzle_hint_1">#6400ff80</color>

<color name="puzzle_hint_2">#2000ff80</color>

<color name="puzzle_selected">#64ff8000</color>

Here’s the basic outline for onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

protected void onDraw(Canvas canvas) {

// Draw the background...

Paint background = new Paint();

background.setColor(getResources().getColor(

R.color.puzzle_background));

canvas.drawRect(0, 0, getWidth(), getHeight(), background);

// Draw the board...

// Draw the numbers...

// Draw the hints...

// Draw the selection...

}

The first parameter is the Canvas on which to draw. In this code, we’re

just drawing a background for the puzzle using the puzzle_background

color.

Now let’s add the code to draw the grid lines for the board:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the board...

// Define colors for the grid lines

Paint dark = new Paint();

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 86

dark.setColor(getResources().getColor(R.color.puzzle_dark));

Paint hilite = new Paint();

hilite.setColor(getResources().getColor(R.color.puzzle_hilite));

Paint light = new Paint();

light.setColor(getResources().getColor(R.color.puzzle_light));

// Draw the minor grid lines

for (int i = 0; i < 9; i++) {

canvas.drawLine(0, i * height, getWidth(), i * height,

light);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(),

light);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

// Draw the major grid lines

for (int i = 0; i < 9; i++) {

if (i % 3 != 0)

continue;

canvas.drawLine(0, i * height, getWidth(), i * height,

dark);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(), dark);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

The code uses three different colors for the grid lines: a light color

between each tile, a dark color between the three-by-three blocks, and

a highlight color drawn on the edge of each tile to make them look

like they have a little depth. The order in which the lines are drawn is

important, since lines drawn later will be drawn over the top of earlier

lines. You can see what this will look like in Figure 4.3, on the next

page. Next, we need some numbers to go inside those lines.

Drawing the Numbers

The following code draws the puzzle numbers on top of the tiles. The

tricky part here is getting each number positioned and sized so it goes

in the exact center of its tile.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the numbers...

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 87

Figure 4.3: Drawing the grid lines with three colors for effect

// Define color and style for numbers

Paint foreground = new Paint(Paint.ANTI_ALIAS_FLAG);

foreground.setColor(getResources().getColor(

R.color.puzzle_foreground));

foreground.setStyle(Style.FILL);

foreground.setTextSize(height * 0.75f);

foreground.setTextScaleX(width / height);

foreground.setTextAlign(Paint.Align.CENTER);

// Draw the number in the center of the tile

FontMetrics fm = foreground.getFontMetrics();

// Centering in X: use alignment (and X at midpoint)

float x = width / 2;

// Centering in Y: measure ascent/descent first

float y = height / 2 - (fm.ascent + fm.descent) / 2;

for (int i = 0; i < 9; i++) {

for (int j = 0; j < 9; j++) {

canvas.drawText(this.game.getTileString(i, j), i

* width + x, j * height + y, foreground);

}

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/eband

ADDING GRAPHICS TO SUDOKU 88

Figure 4.4: Centering the numbers inside the tiles

}

We call the getTileString() method (defined in Section 4.4, The Rest of the

Story, on page 95) to find out what numbers to display. To calculate the

size of the numbers, we set the font height to three-fourths the height

of the tile, and we set the aspect ratio to be the same as the tile’s aspect

ratio. We can’t use absolute pixel or point sizes because we want the

program to work at any resolution.

To determine the position of each number, we center it in both the x

and y dimensions. The x direction is easy—just divide the tile width

by 2. But for the y direction, we have to adjust the starting position

downward a little so that the midpoint of the tile will be the midpoint

of the number instead of its baseline. We use the graphics library’s

FontMetrics class to tell how much vertical space the letter will take in

total, and then we divide that in half to get the adjustment. You can see

the results in Figure 4.4.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/eband

HANDLING INPUT 89

That takes care of displaying the puzzle’s starting numbers (the givens).

The next step is to allow the player to enter their guesses for all the

blank spaces.

4.3 Handling Input

One difference in Android programming—as opposed to, say, iPhone

programming—is that Android phones come in many shapes and sizes

and have a variety of input methods. They might have a keyboard, a

D-pad, a touch screen, a trackball, or some combination of these.

A good Android program, therefore, needs to be ready to support what-

ever input hardware is available, just like it needs to be ready to support

any screen resolution.

Defining and Updating the Selection

First we’re going to implement a little cursor that shows the player

which tile is currently selected. The selected tile is the one that will

be modified when the player enters a number. This code will draw the

selection in onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the selection...

Log.d(TAG, "selRect=" + selRect);

Paint selected = new Paint();

selected.setColor(getResources().getColor(

R.color.puzzle_selected));

canvas.drawRect(selRect, selected);

We use the selection rectangle calculated earlier in onSizeChanged() to

draw an alpha-blended color on top of the selected tile.

Next we provide a way to move the selection by overriding the onKey-

Down() method:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

Log.d(TAG, "onKeyDown: keycode=" + keyCode + ", event="

+ event);

switch (keyCode) {

case KeyEvent.KEYCODE_DPAD_UP:

select(selX, selY - 1);

break;

case KeyEvent.KEYCODE_DPAD_DOWN:

select(selX, selY + 1);

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://www.pragprog.com/titles/eband

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Hello Android’s Home Page

http://pragprog.com/titles/eband

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/eband.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/eband
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/eband
www.pragprog.com/catalog

